Pengaruh Penambahan Rgo Pada Lafeo3 Yang Didoping Co Terhadap Energi Adsorpsi Molekul Etanol Menggunakan Density Functional Theory Untuk Sensor Gas

Alta Ridho Anugrah, Andhy Setiawan, Yuyu Rachmat Tayubi, Ahmad Aminudin, Lilik Hasanah, Siti Kudnie Sahari, Endi Suhendi

Abstract


LaFeO3 (LFO) material has been widely used as a gas sensor construction material. Although LFO has been widely applied to gas sensors, the selectivity and sensitivity as well as the working temperature of gas sensors are still not optimal. In this study, the LFO was Co-doped and coated with single layer rGO to analyze its sensitivity and selectivity based on adsorption energy using Density Functional Theory (DFT). Based on this research, it was found that the presence of Co doping and rGO coating could increase the adsorption energy on the LFO. The addition of the rGO layer to the LFO increased the adsorption energy by 23.58% from -2.38 eV for Co-doped LFO to -2.93 eV when rGO was added. This shows the potential of adding rGO layers to LFO materials for sensor materials.


References


A. Yadav, R. Singh, P. S.-S. and actuators B. Chemical, dan U. 2016, “Fabrication of lanthanum ferrite based liquefied petroleum gas sensor,” Elsevier, 2016, Diakses: Okt 06, 2022. [Daring]. Tersedia pada: https://www.sciencedirect.com/science/article/pii/S0925400516300673.

W. Haron, A. Wisitsoraat, dan S. Wongnawa, “Nanostructured perovskite oxides – LaMO3 (M=Al, Co, Fe) prepared by co-precipitation method and their ethanol-sensing characteristics,” Ceram. Int., vol. 43, no. 6, hal. 5032–5040, Apr 2017, doi: 10.1016/J.CERAMINT.2017.01.013.

F. Cosandey, G. Skandan, A. S.- JOM-e, dan undefined 2000, “Materials and processing issues in nanostructured semiconductor gas sensors,” tms.org, Okt 2000, Diakses: Okt 06, 2022. [Daring]. Tersedia pada: https://www.tms.org/pubs/journals/jom/0010/cosandey/cosandey-0010.html.

M. Johnsson, P. L. preprint cond-mat/0506606, dan undefined 2005, “Crystallography and chemistry of perovskites,” arxiv.org, 2005, Diakses: Okt 06, 2022. [Daring]. Tersedia pada: https://arxiv.org/abs/cond-mat/0506606.

E. Suhendi, Witra, L. Hasanah, dan D. G. Syarif, “Characteristics of a thick film ethanol gas sensor made of mechanically treated LaFeO3 powder,” AIP Conf. Proc., vol. 1848, no. 1, hal. 050008, Mei 2017, doi: 10.1063/1.4983964.

H. T. Fan, X. J. Xu, X. K. Ma, dan T. Zhang, “Preparation of LaFeO3 nanofibers by electrospinning for gas sensors with fast response and recovery,” Nanotechnology, vol. 22, no. 11, Mar 2011, doi: 10.1088/0957-4484/22/11/115502.

V. Kumar, S. K. Srivastava, dan K. Jain, “Cobalt Doped SnO 2 Thick Film Gas Sensors: Conductance and Gas Response Characteristics for LPG and CNG Gas,” Sensors Transducers J., vol. 101, hal. 60–72, 2009, Diakses: Okt 07, 2022. [Daring]. Tersedia pada: http://www.sensorsportal.com.

Y. Luo dkk., “Role of cobalt in Co-ZnO nanoflower gas sensors for the detection of low concentration of VOCs,” Sensors Actuators B Chem., vol. 360, Jun 2022, doi: 10.1016/J.SNB.2022.131674.

J. T. Robinson, F. K. Perkins, E. S. Snow, Z. Wei, dan P. E. Sheehan, “Reduced graphene oxide molecular sensors,” Nano Lett., vol. 8, no. 10, hal. 3137–3140, Okt 2008, doi: 10.1021/NL8013007/ASSET/IMAGES/MEDIUM/NL-2008-013007_0005.GIF.

F. Schedin dkk., “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater., vol. 6, no. 9, hal. 652–655, Sep 2007, doi: 10.1038/NMAT1967.

M. F. Fellah, “The reduced graphene oxide/WO3: Sensing properties for NO2 gas detection at room temperature,” Diam. Relat. Mater., vol. 119, hal. 108593, Nov 2021, doi: 10.1016/J.DIAMOND.2021.108593.

D. Farmanzadeh dan S. Ghazanfary, “The effect of electric field on the interaction of glycine with (6,0) single-walled boron nitride nanotubes,” J. Serbian Chem. Soc., vol. 78, no. 1, hal. 75–83, 2013, doi: 10.2298/JSC120419046F.

Y. Zhou, Z. Lü, J. Li, S. Xu, D. Xu, dan B. Wei, “The electronic properties and structural stability of LaFeO3 oxide by niobium doping: A density functional theory study,” Int. J. Hydrogen Energy, vol. 46, no. 13, hal. 9193–9198, Feb 2021, doi: 10.1016/J.IJHYDENE.2020.12.202.

R. Gao dkk., “The controllable assembly of the heterojunction interface of the ZnO@rGO for enhancing the sensing performance of NO2 at room temperature and sensing mechanism,” Sensors Actuators B Chem., vol. 342, hal. 130073, Sep 2021, doi: 10.1016/J.SNB.2021.130073.

D. Bahamon, M. Khalil, A. Belabbes, Y. Alwahedi, L. F. Vega, dan K. Polychronopoulou, “A DFT study of the adsorption energy and electronic interactions of the SO2 molecule on a CoP hydrotreating catalyst,” RSC Adv., vol. 11, no. 5, hal. 2947–2957, Jan 2021, doi: 10.1039/C9RA10634K.




DOI: https://doi.org/10.17509/wafi.v8i2.62210

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Wahana Fisika

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Wahana Fisika e-ISSN : 2549-1989 (SK no. 0005.25491989/JI.3.1/SK.ISSN/2017.02 ) published by Physics Program ,  Universitas Pendidikan Indonesia Jl. Dr.Setiabudhi 229 Bandung. The journal is indexed by DOAJ (Directory of Open Access Journal) SINTA and Google Scholar. Contact: Here

Creative Commons License Lisensi : Creative Commons Attribution-ShareAlike 4.0 International License.

View Stats