Critical Role of Wet Milling for the Synthesis of Single-Phase Pr2Ru2O7 and Evaluation of Its Crystallite Size

Utami Widyaiswari, Indah Puspitasari, Gia Nurlita Putri, Mohammad Dharul Asmawan, Muhammad Redo Ramadhan, Iman Santoso, Muhamad Darwis Umar, Endi Suhendi, Risdiana Risdiana

Abstract


Pyrochlore oxides, such as Pr₂Ru₂O₇, have attracted a lot of interest due to their unique magnetic properties and possible applications in technology. However, the conventional synthesis techniques are often complicated and expensive. In this work, the significant role of the wet milling method in synthesizing single-phase Pr₂Ru₂O₇ was evaluated together with the determination of the crystallite size. Two types of samples were synthesized: Sample-1 via manual hand grinding and Sample-2 using wet ball milling. X-ray diffraction (XRD) was used to characterize the structural properties of samples, followed by Rietveld refinement analysis. Furthermore, the crystallite size was estimated using the Debye–Scherrer equation. Sample-1 showed multiphase with 8.6% of RuO₂ as secondary phase, whereas Sample-2 exhibited a single-phase Pr₂Ru₂O₇ structure with space group Fd-3m. The crystallite size of Sample-2 was 36.50 ± 3.31 nm, comparable to that produced by more advanced synthesis techniques. From this result, wet ball milling significantly enhances phase purity and provides a feasible, low-cost alternative for synthesizing high-quality Pr₂Ru₂O₇ pyrochlore oxide.

Full Text:

PDF

References


Gardner, J. S., Gingras, M. J. P., & Greedan, J. E. (2010). Magnetic pyrochlore oxides. Reviews of Modern Physics, 82, 53-107.

Ku, S. T., Kumar, D., Lees, M. R., Lee, W. T., Aldus, R., Studer, A., Imperia, P., Asai, S., Masuda, T., Chen, S. W., Chen, J. M., & Chang, L. J. (2018). Low temperature magnetic properties of Nd2Ru2O7. Journal of Physics: Condensed Matter, 30(15), 155601.

Park, J. G., Jo, Y., Park, J., Kim, H. C., Ri, H. C., Xu, S., Moritomo, Y., & Cheong, S. W. (2003). Electrical and magnetic properties of R2Mo2O7 (R= Nd, Sm, Gd and Dy). Physica B: Condensed Matter, 328(1-2), 90-94.

Harris, M. J., Bramwell, S. T., McMorrow, D. F., Zeiske, T. H., & Godfrey, K. W. (1997). Geometrical frustration in the ferromagnetic pyrochlore Ho2Ti2O7. Physical Review Letters, 79(13), 2554-2557.

Nakatsuji, S., Machida, Y., Maeno, Y., Tayama, T., Sakakibara, T., Duijn, J. V., Balicas, L., Millican, J. N., MacAluso, R. T., & Chan, J. Y. (2006). Metallic spin-liquid behavior of the geometrically frustrated Kondo lattice Pr2Ir2O7. Physical Review Letters, 96(8), 087204.

Matsuhira, K., Wakeshima, M., Hinatsu, Y., & Takagi, S. (2011). Metal–insulator transitions in pyrochlore oxides Ln2Ir2O7. Journal of the Physical Society of Japan, 80(9), 094701.

Asih, R., Adam, N., Mohd-Tajudin, S. S., Sari, D. P., Matsuhira, K., Guo, H., Wakeshima, M., Hinatsu, Y., Nakano, T., Nozue, Y., Sulaiman, S., Mohamed-Ibrahim, M. I., Biswas, P. K., & Watanabe, I. (2017). Magnetic moments and ordered states in pyrochlore iridates Nd2Ir2O7 and Sm2Ir2O7 studied by Muon-spin relaxation. Journal of the Physical Society of Japan, 86(2), 024705.

Lee, K. S., Seo, D. K., & Whangbo, M. H. (1997). Structural and Electronic Factors Governing the Metallic and Nonmetallic Properties of the Pyrochlores A2Ru2O7-y. Journal of Solid State Chemistry, 131, 405-408.

Horowitz, H. S., Longo, J. M., Horowitz, H. H., & Lewandowski, J. T. (1985). The synthesis and electrocatalytic properties of nonstoichiometric Ruthenate pyrochlores. ACS Symposium Series: Solid State Chemistry in Catalysis, 279, 143-163.

Matsumoto, A., Cai, Z. X., & Fujita, T. (2022). Synthesis of pyrochlore oxides containing Ir and Ru for efficient oxygen evolution reaction. Materials, 15(17), 6107.

Widyaiswari, U., Putri, G. N., & Risdiana. (2025). Ru-based pyrochlore oxide as a candidate for electrocatalyst in hydrogen production: A systematic literature review. International Journal of Hydrogen Energy, 106, 444-453.

Kim, M., Jinho, P., Kang, M., Kim, J. Y., & Lee, S. W. (2020). Toward efficient electrocatalytic oxygen evolution: Emerging opportunities with metallic pyrochlore oxides for electrocatalysts and conductive supports. ACS Central Science, 6(6), 880-891.

Galyamin, D., Torrero, J., Rodriguez, I., Kolb, M. J., Ferrer, P., Pascual, L., Salam, M. A., Gianolio, D., Celorrio, V., Mokhtar, M., Sanchez, D. G., Gago, A. S., Friedrich, K. A., Pena, M. A., Alonso, J. A., Calle-Vallejo, F., Retuerto, M., & Rojas, S. (2023). Active and durable R2MnRuO7 pyrochlores with low Ru content for acidic oxygen evolution. Nature Communications, 14(2010), 1-12.

Yao, L., Wang, D., Peng, W., Hu, W., Yuan, H., & Feng, S. (2011). Hydrothermal synthesis and characterization of rare-earth ruthenate pyrochlore compounds R2Ru2O7 (R = Pr3+, Sm3+, Ho 3+). Science China Chemistry, 54, 941-946.

Tachibana, M., Kohama, Y., Atake, T., & Takayama-Muromachi, E. (2007). Heat capacity of pyrochlore Pr2Ru2O7. Journal of Applied Physics, 101(9).

Eze, A. A., Sadiku, E. R., Kupolati, W. K., Snyman, J., Ndambuki, J. M., Jamiru, T., Durowoju, M. O., Ibrahim, I. D., Shongwe, M. B., & Desai, D. A. (2021). Wet ball milling of niobium by using ethanol, determination of the crystallite size and microstructures. Scientific Reports, 11(1), 22422.

Rao, R. R., Bucci, A., Corby, S., Moss, B., Liang, C., Gopakumar, A., Stephens, I. E. L., Lloret-Fillol, J., & Durrant, R. (2024). Unravelling the role of particle size and nanostructuring on the oxygen evolution activity of Fe-doped NiO. ACS Catalysis, 14(15), 11389-11399.

Yu, J., He, Q., Yang, G., Zhou, W., Shao, Z., & Ni, M. (2019). Recent advances and prospective in Ruthenium-based materials for electrochemical water splitting. ACS Catalysis, 9(11), 9973-10011.

Abbott, D. F., Pittkowski, R., Macounova, K. M., Nebel, R., Marelli, E., Fabbri, E., Castelli, I. E., Krtil, P., & Schmidt, T. J. (2019). Design and synthesis of Ir/Ru pyrochlore catalysts for the oxygen evolution reaction based on their bulk thermodynamic properties. ACS Applied Materials & Interfaces, 11(41), 37748-37760.

Toby, B. H., & Von Dreele, R. B. (2013). GSAS-II: the genesis of a modern open-source all purpose crystallography software package. Journal of Applied Crystallography, 46(2), 544-549.

Holzwarth, U., & Gibson, N. (2011). The Scherrer equation versus the 'Debye-Scherrer equation'. Nature Nanotechnology, 6(9), 534.

Bansal, C., Kawanaka, H., Bando, H., & Nishihara, Y. (2002). Structure and magnetic properties of the pyrochlore Ho2Ru2O7: A possible dipolar spin ice system. Physical Review B, 66(5), 052406.

Pawar, R. A., Nikumbh, A. K., Bhange, D. S., Karale, N. J., Nighot, D. V., & Khanvilkar, M. B. (2017). Chemical synthesis and characterization of nano-sized rare-earth ruthenium pyrochlore compounds Ln2Ru2O7 (Ln = rare earth). Bulletin of Materials Science, 40(7), 1335-1345.




DOI: https://doi.org/10.17509/wafi.v10i1.84846

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Wahana Fisika

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Wahana Fisika e-ISSN : 2549-1989 (SK no. 0005.25491989/JI.3.1/SK.ISSN/2017.02 ) published by Physics Program ,  Universitas Pendidikan Indonesia Jl. Dr.Setiabudhi 229 Bandung. The journal is indexed by DOAJ (Directory of Open Access Journal) SINTA and Google Scholar. Contact: Here

Creative Commons License Lisensi : Creative Commons Attribution-ShareAlike 4.0 International License.

View My Stats>View Stats