Integrated CRITIC-TOPSIS and Monte Carlo Sensitivity Analysis for Optimal Various Natural Fibre Selection in Sustainable Building Insulation Composites to Support the Sustainable Development Goals (SDGs)

Mohd Hidayat Ab Rahman, Jamaluddin Mahmud, Ridhwan Jumaidin, Siti Mariam Abdul Rahman

Abstract


The selection of sustainable insulation materials is crucial for supporting environmentally responsible building construction in alignment with the Sustainable Development Goals (SDGs). This study proposes an integrated multi criteria decision-making approach by combining the CRITIC method for objective criteria weighting, the TOPSIS method for ranking alternatives, and Monte Carlo sensitivity analysis to assess ranking stability under uncertainty. Twelve natural fibres were evaluated based on mechanical strength, physical characteristics, and moisture resistance. The CRITIC TOPSIS integration effectively identified the most suitable fibre alternatives for insulation purposes. Sensitivity analysis validated the robustness of the model, ensuring consistent ranking outcomes across multiple simulations. This integrated approach offers a reliable and transparent framework for optimal material selection in sustainable construction practices. The study contributes to advancing sustainable building technologies while supporting SDG 9 (Industry, Innovation and Infrastructure), SDG 11 (Sustainable Cities and Communities), and SDG 12 (Responsible Consumption and Production).

Keywords


Building construction; Critic-topsis method; Monte carlo analysis; MCDM; Natural fibre

Full Text:

PDF

References


Luhar, S., Suntharalingam, T., Navaratnam, S., Luhar, I., Thamboo, J., Poologanathan, K., and Gatheeshgar, P. (2020). Sustainable and renewable bio-based natural fibres and its application for 3D printed concrete: A review. Sustainability, 12(24), 10485.

Kaushik, P., Jaivir, J., and Mittal, K. (2017). Analysis of mechanical properties of jute fiber strengthened epoxy/polyester composites. Engineering Solid Mechanics, 5(2), 103-112

Dahy, H. (2019). Natural fibre-reinforced polymer composites (NFRP) fabricated from lignocellulosic fibres for future sustainable architectural applications, case studies: segmented-shell construction, acoustic panels, and furniture. Sensors, 19(3), 738.

Dittenber, D. B., and GangaRao, H. V. (2012). Critical review of recent publications on use of natural composites in infrastructure. Composites Part A: Applied Science and Manufacturing, 43(8), 1419-1429.

Maidin, N. A., Sapuan, S. M., Mohammad Taha, M., and Zuhri, M. Y. M. (2022). Material selection and conceptual design in natural fibre composites. Physical Sciences Reviews, 9(1), 73.

Kamarudin, S. H., Mohd Basri, M. S., Rayung, M., Abu, F., Ahmad, S. B., Norizan, M. N., and Abdullah, L. C. (2022). A review on natural fiber reinforced polymer composites (NFRPC) for sustainable industrial applications. Polymers, 14(17), 3698.

Keya, K. N., Kona, N. A., Koly, F. A., Maraz, K. M., Islam, M. N., and Khan, R. A. (2019). Natural fiber reinforced polymer composites: history, types, advantages and applications. Materials Engineering Research, 1(2), 69-85.

Elfaleh, I., Abbassi, F., Habibi, M., Ahmad, F., Guedri, M., Nasri, M., and Garnier, C. (2023). A comprehensive review of natural fibers and their composites: An eco-friendly alternative to conventional materials. Results in Engineering, 19, 101271.

Bijlwan, P. P., Prasad, L., and Sharma, A. (2021). Recent advancement in the fabrication and characterization of natural fiber reinforced composite: a review. Materials Today: Proceedings, 44, 1718-1722.

Azman, M. A., Asyraf, M. R. M., Khalina, A., Petrů, M., Ruzaidi, C. M., Sapuan, S. M., Wan Nik and Suriani, M. J. (2021). Natural fiber reinforced composite material for product design: A short review. Polymers, 13(12), 1917.

Jomboh, K. J., Garkida, A. D., Alemaka, E. M., Yakubu, M. K., Alkali, V. C., Eze, W. U., and Lawal, N. (2024). Properties and applications of natural, synthetic and hybrid fiber reinforced polymer composite: A review. AIMS Materials Science, 11(4), 774-801.

Amjad, A., Abidin, M. S. Z., Alshahrani, H., and Ab Rahman, A. A. (2021). Effect of fibre surface treatment and nanofiller addition on the mechanical properties of flax/PLA fibre reinforced epoxy hybrid nanocomposite. Polymers, 13(21), 3842.

Chakraborty, S., and Chatterjee, P. (2013). Selection of materials using multi-criteria decision-making methods with minimum data. Decision Science Letters, 2(3), 135-148.

Rahim, A. A. A., Ramesh, S., and Musa, S. N. (2023, January). Selection of composite material based on compromise MCDM method. In AIP Conference Proceedings, 2643(1).

Noryani, M., Sapuan, S. M., and Mastura, M. T. (2018). Multi-criteria decision-making tools for material selection of natural fibre composites: A review. Journal of Mechanical Engineering and Sciences, 12(1), 3330-3353.

Ruzgys, A., Volvačiovas, R., Ignatavičius, Č., and Turskis, Z. (2014). Integrated evaluation of external wall insulation in residential buildings using SWARA-TODIM MCDM method. Journal of Civil Engineering and Management, 20(1), 103-110.

Patnaik, P. K., Swain, P. T. R., Mishra, S. K., Purohit, A., and Biswas, S. (2020). Composite material selection for structural applications based on AHP-MOORA approach. Materials Today: Proceedings, 33, 5659-5663.

Amarnath, K., Babu, K. J., and Kumar, M. S. (2021, February). Selection of optimal flax fiber reinforced components for experimental investigation by using TOPSIS method. In IOP Conference Series: Materials Science and Engineering 1057(1), 012055.

Chellappa, V., and Ginda, G. (2023). Application of multiple-criteria decision making methods for construction safety research. Proceedings of the Institution of Civil Engineers-Management, Procurement and Law, 177(3), 127-136.

Yarramsetty, S., Faheem, M., and MVN, S. K. (2023). An integrated approach to building planning using the multi-criteria decision method (MCDM) and BIM. International Journal of Sustainable Construction Engineering and Technology, 14(4), 49-63.

Zhang, Y., Zhang, Y., Song, Z., and Pan, H. (2024). A LFPP-FAHP based evaluation model of blasting scheme for tunnel undercrossing existing buildings. Tunnelling and Underground Space Technology, 153, 105937.

Medrán, F., Enfedaque, A., and Alberti, M. G. (2024). A sustainability assessment of industrialised housing construction using the MIVES (Modelo Integrado de Valor para una Evaluación Sostenible)-based multicriteria decision-making method. Buildings, 14(9), 2712.

Ustinovichius, L., Turskis, Z., Miedziałowski, C., and Vaišnoras, M. (2024). Implementation of Wood-Framed Buildings in the Nordic Region: A MADAMOS (an integrated multi-criteria decision-making approach for profitable realization alternatives) Method. Buildings, 14(4), 1020.

Bajwa, A. U. R., Siriwardana, C., Shahzad, W., and Naeem, M. A. (2025). Material selection in the construction industry: a systematic literature review on multi-criteria decision making. Environment Systems and Decisions, 45(1), 1-22.

Mahesh, V., Joladarashi, S., and Kulkarni, S. M. (2021). A comprehensive review on material selection for polymer matrix composites subjected to impact load. Defence Technology, 17(1), 257-277.

Singh, S., and Ru, J. (2023). Goals of sustainable infrastructure, industry, and innovation: A review and future agenda for research. Environmental Science and Pollution Research, 30(11), 28446-28458.

Nabiyeva, G. N., Wheeler, S. M., London, J. K., and Brazil, N. (2023). Implementation of sustainable development goal 11 (sustainable cities and communities): Initial good practices data. Sustainability, 15(20), 14810.

Van Driel, M., Biermann, F., Kim, R. E., and Vijge, M. J. (2024). The impact of the sustainable development goals on global policies on sustainable consumption and production. globalizations, 21(8), 1366-1382.

Więckowski, J., and Sałabun, W. (2023). Sensitivity analysis approaches in multi-criteria decision analysis: A systematic review. Applied Soft Computing, 148, 110915.

Stojčić, M., Zavadskas, E. K., Pamučar, D., Stević, Ž., and Mardani, A. (2019). Application of MCDM methods in sustainability engineering: A literature review 2008–2018. Symmetry, 11(3), 350.

Ho, W., Dey, P. K., and Higson, H. E. (2006). Multiple criteria decision‐making techniques in higher education. International journal of educational management, 20(5), 319-337.

Mufazzal, S., and Muzakkir, S. M. (2018). A new multi-criterion decision making (MCDM) method based on proximity indexed value for minimizing rank reversals. Computers and Industrial Engineering, 119, 427-438.

Zhang, H., Peng, Y., Tian, G., Wang, D., and Xie, P. (2017). Green material selection for sustainability: A hybrid MCDM approach. PloS one, 12(5), e0177578.

Yin, J., Wang, J., Wang, C., Wang, L., and Chang, Z. (2023). CRITIC-TOPSIS based evaluation of smart community governance: A case study in China. Sustainability, 15(3), 1923.

Ab Rahman, M. H., Abdul Rahman, S. M., Jumaidin, R., and Mahmud, J. (2024). A Framework for Prioritising the Performance Criteria of Natural Fibre Composite Materials: Incorporation of CRITICTOPSIS Method. Pertanika Journal of Science and Technology, 32(6), 2679–2698.

Yilmaz, B. Ç., Acun Özgünler, S., and Yilmaz, Y. (2024). A multi-criteria decision-making method for thermal insulation material selection in nZEB level questioned affordable multifamily housings. Journal of Building Physics, 47(6), 628-650.

Ali, A., Issa, A., and Elshaer, A. (2024). A comprehensive review and recent trends in thermal insulation materials for energy conservation in buildings. Sustainability, 16(20), 8782.

Hafez, F. S., Sa'di, B., Safa-Gamal, M., Taufiq-Yap, Y. H., Alrifaey, M., Seyedmahmoudian, M., Horan, B,. and Mekhilef, S. (2023). Energy efficiency in sustainable buildings: a systematic review with taxonomy, challenges, motivations, methodological aspects, recommendations, and pathways for future research. Energy Strategy Reviews, 45, 101013.

Okokpujie, I. P., Essien, V., Ikumapayi, O. M., Nnochiri, E. S., Okokpujie, K., and Akinlabi, E. (2022). An overview of thermal insulation material for sustainable engineering building application. International Journal of Design and Nature and Ecodynamics, 17(6), 831-841.

Chen, L., Yang, M., Chen, Z., Xie, Z., Huang, L., Osman, A. I., Farghali, M., Sandanayake, M., Liu, E., Ahn, Y.H., Al-Muhtaseb, A.H., Rooney, D.W., and Yap, P. S. (2024). Conversion of waste into sustainable construction materials: A review of recent developments and prospects. Materials Today Sustainability, 27, 100930.

Majumder, A., Canale, L., Mastino, C. C., Pacitto, A., Frattolillo, A., and Dell’Isola, M. (2021). Thermal characterization of recycled materials for building insulation. Energies, 14(12), 3564.

Kader, S., Gratchev, I., and Michael, R. N. (2024). Recycled waste substrates: A systematic review. Science of The Total Environment, 953, 176029.

Gholampour, A., and Ozbakkaloglu, T. (2020). A review of natural fiber composites: properties, modification and processing techniques, characterization, applications. Journal of Materials Science, 55(3), 829-892.

Asyraf, M. R. M., Syamsir, A., Supian, A. B. M., Usman, F., Ilyas, R. A., Nurazzi, N. M., Norrahim, F.N.M., Razman, R., Zakaria, S.S.Z., Sharma, S., Itam, Z., and Rashid, M. Z. A. (2022). Sugar palm fibre-reinforced polymer composites: influence of chemical treatments on its mechanical properties. Materials, 15(11), 3852.

Graupner, N., Narkpiban, K., Poonsawat, T., Tooptompong, P., and Müssig, J. (2019). Toddy palm (Borassus flabellifer) fruit fibre bundles as reinforcement in polylactide (PLA) composites: An overview about fibre and composite characteristics. Journal of Renewable Materials, 7(8), 693-711.

Sahu, P., and Gupta, M. K. (2020). A review on the properties of natural fibres and its bio-composites: Effect of alkali treatment. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 234(1), 198-217.

Wang, W., Zhang, Y., Mo, Z., Chouw, N., Jayaraman, K., and Xu, Z. D. (2023). A critical review on the properties of natural fibre reinforced concrete composites subjected to impact loading. Journal of Building Engineering, 77, 107497.

Jin, C., Mi, J., Li, F., and Liang, M. (2023). An improved TOPSIS method for multi-criteria decision making based on hesitant fuzzy β neighborhood. Artificial Intelligence Review, 56(Suppl 1), 793-831.

Arivendan, A., Thangiah, W. J. J., and Desai, D. A. (2024). Ramie natural fibre-reinforced biodegradable composites: mechanical, absorption and thermal behaviour study. Iranian Polymer Journal, 33(1), 35-43.

Liu, C., Zou, D., Huang, Q., Li, S., Zheng, X., and Li, X. (2023). Optical and mechanical properties of ramie fiber/epoxy resin transparent composites. Journal of Renewable Materials, 11(10).

Kumar, M. D. (2023). A study on importance of microsoft excel data analysis statistical tools in research works. Journal of Management and Educational Research Innovation, 1(3), 25-33.

Noryani, M., Sapuan, S. M., Mastura, M. T., Zuhri, M. Y. M., and Zainudin, E. S. (2018). A statistical framework for selecting natural fibre reinforced polymer composites based on regression model. Fibers and Polymers, 19, 1039-1049.

Al-Oqla, F. M., Salit, M. S., Ishak, M. R., and Aziz, N. A. (2015). Selecting natural fibers for bio-based materials with conflicting criteria. American Journal of Applied Sciences, 12(1), 64.

Sakoshev, Z. G., Blaznov, A. N., Bychin, N. V., Medvedev, P. A., Zadvornykh, G. S., Sakoshev, E. G., Firsov, V.V., and Cheremukhina, I. V. (2024). Morphological and physicomechanical characterization of synthetic and natural fibers. Journal of Polymer Research, 31(3), 86.

Yazid, N. A., Sabtu, N. I., Azmiral, N. U. S., and Mahad, N. F. (2023). The application of critic-topsis method in solving the material handling equipment selection problem. Malaysian Journal of Computing (MJoC), 8(1), 1311-1330.

Gaur, S., Dosapati, S., and Tawalare, A. (2023). Stakeholder assessment in construction projects using a CRITIC-TOPSIS approach. Built Environment Project and Asset Management, 13(2), 217-237.

Alinezhad, A., and Amini, A. (2011). Sensitivity analysis of TOPSIS technique: The results of change in the weight of one attribute on the final ranking of alternatives. Journal of Optimization in Industrial Engineering, 7, 23-28.

Steenland, K., and Greenland, S. (2004). Monte Carlo sensitivity analysis and Bayesian analysis of smoking as an unmeasured confounder in a study of silica and lung cancer. American journal of epidemiology, 160(4), 384-392.

Haahtela, T. J. (2010). Regression sensitivity analysis for cash flow simulation based real option valuation. Procedia-Social and Behavioral Sciences, 2(6), 7670-7671.

Zio, E., and Pedroni, N. (2012). Monte Carlo simulation-based sensitivity analysis of the model of a thermal–hydraulic passive system. Reliability Engineering and System Safety, 107, 90-106.

Kwak, Y. H., and Ingall, L. (2007). Exploring Monte Carlo simulation applications for project management. Risk Management, 9, 44-57.

Pianosi, F., Beven, K., Freer, J., Hall, J. W., Rougier, J., Stephenson, D. B., and Wagener, T. (2016). Sensitivity analysis of environmental models: A systematic review with practical workflow. Environmental Modelling and Software, 79, 214-232.

Koulinas, G. K., Demesouka, O. E., Sidas, K. A., and Koulouriotis, D. E. (2021). A TOPSIS—risk matrix and Monte Carlo expert system for risk assessment in engineering projects. Sustainability, 13(20), 11277.

De Lataillade, A., Blanco, S., Clergent, Y., Dufresne, J. L., El Hafi, M., and Fournier, R. (2002). Monte Carlo method and sensitivity estimations. Journal of Quantitative Spectroscopy and Radiative Transfer, 75(5), 529-538.

Meglinskiĭ, I. V., and Matcher, S. D. (2001). Analysis of the spatial distribution of detector sensitivity in a multilayer randomly inhomogeneous medium with strong light scattering and absorption by the Monte Carlo method. Optics and Spectroscopy, 91, 654-659.




DOI: https://doi.org/10.17509/ajse.v5i2.85614

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Universitas Pendidikan Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

ASEAN Journal of Science and Engineering (AJSE) is published by UPI 

View My Stats