Effect of Sintering Conditions on the Structural and Morphological Characteristics of Hydroxyapatite Synthesized from Belida Fish (Chitala lopis) Bone

Ratna Kusumawardani, Atiek Rostika Noviyanti, Mukhamad Nurhadi, Akrajas Ali Umar, Ferli Septi Irwansyah, Muhamad Diki Permana

Abstract


Hydroxyapatite (HA) was synthesized from Chitala lopis (belida fish) bone waste as a sustainable and low-cost natural source, and the effects of sintering temperature and atmosphere on its properties were evaluated. Bone powder was sintered at 600–1000°C under open crucible (FBO) and closed crucible (FBC) conditions. X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) confirmed HA formation, with crystallinity and crystal size increasing at higher temperatures. Scanning electron microscopy (SEM) revealed morphological evolution from porous, irregular structures at lower temperatures to denser, more compact morphologies at higher temperatures. FBO conditions promoted larger crystallites and oriented growth, whereas FBC enhanced densification and reduced porosity. X-ray fluorescence (XRF) detected trace elements (Zn, Fe, Ti) potentially beneficial for bioactivity. Findings indicate that both sintering temperature and atmosphere significantly influence HA purity, crystallinity, and morphology, enabling property optimization for applications from porous adsorbents to dense bone implant materials.


Keywords


Crystallinity; Fish bone; Grain size; Hydroxyapatite; Sintering

Full Text:

PDF

References


Noviyanti, A. R., Akbar, N., Deawati, Y., Ernawati, E. E., Malik, Y. T., and Fauzia, R. P. (2020). A novel hydrothermal synthesis of nanohydroxyapatite from eggshell-calcium-oxide precursors. Heliyon, 6(4), e03655.

Sharifianjazi, F., Esmaeilkhanian, A., Moradi, M., Pakseresht, A., Asl, M. S., Karimi-Maleh, H., and Varma, R. S. (2021). Biocompatibility and mechanical properties of pigeon bone waste extracted natural nano-hydroxyapatite for bone tissue engineering. Materials Science and Engineering: B, 264, 114950.

Onuma, K., Makino, M., Sakamaki, I., Nakamura, M., Nishida, E., Tanaka, S., and Oyane, A. (2024). Ultrafast coating of fluoride-substituted hydroxyapatite layers on teeth by laser-assisted crystallization: Comparison of surface structure and composition among enamel, dentin, and cementum. Applied Surface Science, 674, 160876.

Wu, Y., and Bose, S. (2005). Nanocrystalline hydroxyapatite: micelle templated synthesis and characterization. Langmuir, 21(8), 3232-3234.

Dewi, A. H., and Ana, I. D. (2018). The use of hydroxyapatite bone substitute grafting for alveolar ridge preservation, sinus augmentation, and periodontal bone defect: A systematic review. Heliyon, 4(10), e00884.

Rodríguez-Lugo, V., Salinas-Rodríguez, E., Vázquez, R. A., Alemán, K., and Rivera, A. L. (2017). Hydroxyapatite synthesis from a starfish and β-tricalcium phosphate using a hydrothermal method. RSC advances, 7(13), 7631-7639.

Sadat-Shojai, M., Khorasani, M. T., Dinpanah-Khoshdargi, E., and Jamshidi, A. (2013). Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta biomaterialia, 9(8), 7591-7621.

Fihri, A., Len, C., Varma, R. S., and Solhy, A. (2017). Hydroxyapatite: A review of syntheses, structure and applications in heterogeneous catalysis. Coordination Chemistry Reviews, 347, 48-76.

Kaneda, K., and Mizugaki, T. (2009). Development of concerto metal catalysts using apatite compounds for green organic syntheses. Energy & Environmental Science, 2(6), 655-673.

Watanabe, Y., Ikoma, T., Suetsugu, Y., Yamada, H., Tamura, K., Komatsu, Y., and Moriyoshi, Y. (2006). The densification of zeolite/apatite composites using a pulse electric current sintering method: A long-term assurance material for the disposal of radioactive waste. Journal of the European Ceramic Society, 26(4-5), 481-486.

Wu, H., Yan, H., Quan, Y., Zhao, H., Jiang, N., and Yin, C. (2018). Recent progress and perspectives in biotrickling filters for VOCs and odorous gases treatment. Journal of Environmental Management, 222, 409-419.

Shaaban, M., Van Zwieten, L., Bashir, S., Younas, A., Núñez-Delgado, A., Chhajro, M. A., and Hu, R. (2018). A concise review of biochar application to agricultural soils to improve soil conditions and fight pollution. Journal of Environmental Management, 228, 429-440.

Włóka, D., Placek, A., Smol, M., Rorat, A., Hutchison, D., and Kacprzak, M. (2019). The efficiency and economic aspects of phytoremediation technology using Phalaris arundinacea L. and Brassica napus L. combined with compost and nano SiO2 fertilization for the removal of PAH's from soil. Journal of Environmental Management, 234, 311-319.

Holkar, C. R., Jadhav, A. J., Pinjari, D. V., Mahamuni, N. M., and Pandit, A. B. (2016). A critical review on textile wastewater treatments: possible approaches. Journal of Environmental Management, 182, 351-366.

Kumari, M., Verma, R. K., and Roy, P. K. (2018). Effect of Carbafuran Pesticide on Mitotic Chromosomes of Mus musculus. International Journal of Applied Sciences and Biotechnology, 6(2), 169-173.

Venkatesan, J., Rekha, P. D., Anil, S., Bhatnagar, I., Sudha, P. N., Dechsakulwatana, C., and Shim, M. S. (2018). Hydroxyapatite from cuttlefish bone: isolation, characterizations, and applications. Biotechnology and Bioprocess Engineering, 23(4), 383-393.

Amenaghawon, A. N., Anyalewechi, C. L., Darmokoesoemo, H., and Kusuma, H. S. (2022). Hydroxyapatite-based adsorbents: Applications in sequestering heavy metals and dyes. Journal of Environmental Management, 302, 113989.

Ho, J. Y., Chang, T. T., Ho, P. C., Chang, H. K., and Chen, P. Y. (2024). Fabrication of gyroid-structured, hierarchically-porous hydroxyapatite scaffolds by a dual-templating method. Materials Chemistry and Physics, 314, 128854.

Wan, L., Cui, B., and Wang, L. (2024). A review on preparation raw materials, synthesis methods, and modifications of hydroxyapatite as well as their environmental applications. Sustainable Chemistry and Pharmacy, 38, 101447.

Huyen, D. T., Tien, D. X., and Thoai, D. Q. (2023). Bone-char from various food-waste: Synthesis, characterization, and removal of fluoride in groundwater. Environmental Technology & Innovation, 32, 103342.

Rashed, M. N., Gad, A. A. E., and Fathy, N. M. (2024). Efficiency of chemically activated raw and calcined waste fish bone for adsorption of Cd (II) and Pb (II) from polluted water. Biomass Conversion and Biorefinery, 14(24), 31703-31720.

Castillo-Paz, A. M., Gomez-Resendiz, M., Canon-Davila, D. F., Correa-Pina, B. A., Ramirez-Bon, R., and Rodriguez-Garcia, M. E. (2023). The effect of temperature on the physical-chemical properties of bovine hydroxyapatite biomimetic scaffolds for bone tissue engineering. Ceramics International, 49(21), 33735-33747.

Wagner, J., Luck, S., Loger, K., Açil, Y., Spille, J. H., Kurz, S., and Naujokat, H. (2024). Bone regeneration in critical-size defects of the mandible using biomechanically adapted CAD/CAM hybrid scaffolds: An in vivo study in miniature pigs. Journal of Cranio-Maxillofacial Surgery, 52(1), 127-135.

Alsaiari, R. A., Musa, E. M., and Rizk, M. A. (2023). Biodiesel production from date seed oil using hydroxyapatite-derived catalyst from waste camel bone. Heliyon, 9(5), e15606.

Pei, X., Wang, L., Wu, L., Lei, H., Zeng, Z., Wang, L., and Fan, Y. (2023). In-situ synthesized hydroxyapatite whiskers on 3D printed titanium cages enhanced osteointegration in a goat spinal fusion model. Materials & Design, 233, 112270.

Liaqat, S., Ahmed, Z., Umer, M. U., Ali, Q., Mustafa, M. F., Ferheen, I., and Waseem, M. (2024). Sheep bone valorization: Enhancing gastronomic sustainability through hydroxyapatite-enriched potato wedges. International Journal of Gastronomy and Food Science, 35, 100841.

Nurhadi, M., Kusumawardani, R., Wirhanuddin, W., Gunawan, R., and Nur, H. (2019). Carbon-containing hydroxyapatite obtained from fish bone as low-cost mesoporous material for methylene blue adsorption. Bulletin of Chemical Reaction Engineering & Catalysis, 14(3), 660-671.

Swamiappan, S., Xie, X., Lu, C., & Peng, X. (2025). Ultrasonic-assisted green synthesis and characterization of nano-hydroxyapatite from Cirrhinus molitorella fish scales bio-waste for biomedical applications. Ceramics International, 51, 20452-20464.

Sampath, V., and Krishnasamy, V. (2024). Synthesis and characterization of hydroxyapatite self-assembled nanocomposites on graphene oxide sheets from seashell waste: A green process for regenerative medicine. Journal of the Mechanical Behavior of Biomedical Materials, 151, 106383.

Wibisono, Y., Ummah, S. R., Hermanto, M. B., Djoyowasito, G., and Noviyanto, A. (2024). Slow-release hydroxyapatite fertilizer from crab shells waste for sustainable crop production. Results in Engineering, 21, 101781.

Esoso, A. A., Jen, T. C., Ikumapayi, O. M., Oladapo, B. I., and Akinlabi, E. T. (2023). Experimental analysis of nanostructured PEEK, African giant snail shell, and sea snail shell powder for hydroxyapatite formation for bone implant applications. Composites Part C: Open Access, 12, 100398.

Pon-On, W., Suntornsaratoon, P., Charoenphandhu, N., Thongbunchoo, J., Krishnamra, N., and Tang, I. M. (2016). Hydroxyapatite from fish scale for potential use as bone scaffold or regenerative material. Materials Science and Engineering: C, 62, 183-189.

Predoi, S. A., Ciobanu, S. C., Chifiriuc, M. C., Motelica-Heino, M., Predoi, D., and Iconaru, S. L. (2022). Hydroxyapatite nanopowders for effective removal of strontium ions from aqueous solutions. Materials, 16(1), 229.

Kamal, M. M., Mahmud, S., Plabon, I. A., Kader, M. A., and Islam, M. N. (2024). Effects of sintering temperature on the physical, structural, mechanical and antimicrobial properties of extracted hydroxyapatite ceramics from Anabas testudineus bone and head scull for biomedical applications. Results in Materials, 22, 100590.

Hussin, M. S. F., Idris, M. I., Abdullah, H. Z., Azeem, W., and Ghazali, I. (2023). Characterization and in vitro evaluation of hydroxyapatite from Fringescale sardinella bones for biomedical applications. Journal of Saudi Chemical Society, 27(5), 101721.

Trung, T. S., Minh, N. C., Cuong, H. N., Phuong, P. T. D., Dat, P. A., Nam, P. V., and Van Hoa, N. (2022). Valorization of fish and shrimp wastes to nano-hydroxyapatite/chitosan biocomposite for wastewater treatment. Journal of Science: Advanced Materials and Devices, 7(4), 100485.

Irwansyah, F. S., Noviyanti, A. R., Eddy, D. R., & Risdiana, R. (2022). Green template-mediated synthesis of biowaste nano-hydroxyapatite: a systematic literature review. Molecules, 27(17), 5586.

Errich, A., Azzaoui, K., Mejdoubi, E., Hammouti, B., Abidi, N., Akartasse, N., Benidire, L., EL Hajjaji, S., Sabbahi, R., and Lamhamdi, A. (2021). Toxic heavy metals removal using a hydroxyapatite and hydroxyethyl cellulose modified with a new Gum Arabic. Indonesian Journal of Science and Technology, 6(1), 41-64.

Irwansyah, F.S., Amal, A.I., Hadisantoso, E.P., Noviyanti, A.R., Eddy, D.R., Risdiana, R., Suryana, S., and Md Zain, S.B. (2023). How to make and characterize hydroxyapatite from eggshell using the hydrothermal method: potential insights for drug delivery system. Indonesian Journal of Science and Technology, 8(3), 469-486.

Waardhani, A.W., Noviyanti, A.R., Kusrini, E., Nugrahaningtyas, K.D., Prasetyo, A.B., Usman, A., Irwansyah, F.S., and Juliandri, J. (2025). A study on sustainable eggshell-derived hydroxyapatite/CMC membranes: Enhancing flexibility and thermal stability for sustainable development goals (SDGs). Indonesian Journal of Science and Technology, 10(2), 191-206.

Noviyanti, A.R., Adzkia, Q.A.A., Novella, I., Kurnia, I., Suryana, S., Ma'Amor, A.B., and Irwansyah, F.S. (2024). Hydroxyapatite as delivery and carrier material: Systematic literature review with bibliometric analysis. ASEAN Journal of Science and Engineering, 4(2), 191-206.

Le Ho, K. H., Dao, V. H., Pham, X. K., Nguyen, P. A., Phan, B. V., Doan, T. T., and Lam, T. H. (2022). Physicochemical properties, acute and subchronic toxicity of nano-hydroxyapatite obtained from Lates calcarifer fish bone. Regional Studies in Marine Science, 55, 102560.

Mathirat, A., Dalavi, P. A., Prabhu, A., GV, Y. D., Anil, S., Senthilkumar, K., and Venkatesan, J. (2022). Remineralizing potential of natural nano-hydroxyapatite obtained from epinephelus chlorostigma in artificially induced early enamel lesion: An in vitro study. Nanomaterials, 12(22), 3993.

Ahmed, F., Ali, I., Kousar, S., and Ahmed, S. (2022). The environmental impact of industrialization and foreign direct investment: empirical evidence from Asia-Pacific region. Environmental Science and Pollution Research, 29(20), 29778-29792.

Kazior, J. (2023). Influence of sintering atmosphere, temperature and the solution-annealing treatment on the properties of precipitation-hardening sintered 17-4 PH stainless steel. Materials, 16(2), 760.

Yusuf, A., Muhammad, N. M., Noviyanti, A. R., and Risdiana, R. (2020). The effect of temperature synthesis on the purity and crystallinity of hydroxyapatite. Key Engineering Materials, 860, 228-233.

Chen, H., Wang, R., Qian, L., Liu, H., Wang, J., and Zhu, M. (2020). Surface modification of urchin-like serried hydroxyapatite with sol-gel method and its application in dental composites. Composites Part B: Engineering, 182, 107621.

Idris, N., Dan-Asabe, B., Osseni, S. A., Rabiu, K. O., Sowunmi, A. R., Bansod, N. D., and Obada, D. O. (2025). Properties of natural hydroxyapatite prepared by pressureless sintering using different temperatures and holding times. Next Nanotechnology, 7, 100168.

Bas, M., Daglilar, S., Kuskonmaz, N., Kalkandelen, C., Erdemir, G., Kuruca, S. E., and Ficai, A. (2020). Mechanical and biocompatibility properties of calcium phosphate bioceramics derived from salmon fish bone wastes. International Journal of Molecular Sciences, 21(21), 8082.

Boutinguiza, M., Pou, J., Comesaña, R., Lusquiños, F., De Carlos, A., and León, B. (2012). Biological hydroxyapatite obtained from fish bones. Materials Science and Engineering: C, 32(3), 478-486.

Kusumawardani, R., Noviyanti, A. R., Nurhadi, M., and Umar, A. A. (2023). Effect of Preparation Acetone on Fish Bones Synthesized Through Sintering Method to Improve Hydroxyapatite Characteristics. al Kimiya: Jurnal Ilmu Kimia dan Terapan, 10(2), 87-97.

Sathiyavimal, S., Vasantharaj, S., Shanmugavel, M., Manikandan, E., Nguyen-Tri, P., Brindhadevi, K., and Pugazhendhi, A. (2020). Facile synthesis and characterization of hydroxyapatite from fish bones: Photocatalytic degradation of industrial dyes (crystal violet and Congo red). Progress in Organic Coatings, 148, 105890.

Fatimah, S., Ragadhita, R., Al Husaeni, D. F., and Nandiyanto, A. B. D. (2022). How to calculate crystallite size from x-ray diffraction (XRD) using Scherrer method. ASEAN Journal of Science and Engineering, 2(1), 65-76.

Fernández-Arias, M., Álvarez-Olcina, I., Malvido-Fresnillo, P., Vázquez, J. A., Boutinguiza, M., Comesaña, R., and Pou, J. (2021). Biogenic calcium phosphate from fish discards and by-products. Applied Sciences, 11(8), 3387.

Hammood, A. S., Hassan, S. S., Alkhafagy, M. T., and Jaber, H. L. (2019). Effect of calcination temperature on characterization of natural hydroxyapatite prepared from carp fish bones. SN Applied Sciences, 1(5), 1-12.

Ooi, C. Y., Hamdi, M., and Ramesh, S. (2007). Properties of hydroxyapatite produced by annealing of bovine bone. Ceramics international, 33(7), 1171-1177.

Abdin, Y., Usman, A., Ok, Y. S., Tsang, Y. F., and Al-Wabel, M. (2020). Competitive sorption and availability of coexisting heavy metals in mining-contaminated soil: Contrasting effects of mesquite and fishbone biochars. Environmental Research, 181, 108846.

Khamkongkaeo, A., Boonchuduang, T., Klysubun, W., Amonpattaratkit, P., Chunate, H. T., Tuchinda, N., and Lohwongwatana, B. (2021). Sintering behavior and mechanical properties of hydroxyapatite ceramics prepared from Nile Tilapia (Oreochromis niloticus) bone and commercial powder for biomedical applications. Ceramics International, 47(24), 34575-34584.

Wang, Z., Wang, Y., Ito, Y., Zhang, P., and Chen, X. (2016). A comparative study on the in vivo degradation of poly (L-lactide) based composite implants for bone fracture fixation. Scientific reports, 6(1), 20770.

Chaair, H., Labjar, H., and Britel, O. (2017). Synthesis of β-tricalcium phosphate. Morphologie, 101(334), 120-124.

Jalota, S., Tas, A. C., and Bhaduri, S. B. (2005). Synthesis of HA‐Seeded TTCP (Ca4(PO4) 2O) Powders at 1230° C from Ca (CH3COO) 2· H2O and NH4H2PO4. Journal of the American Ceramic Society, 88(12), 3353-3360.

Ara, K. A., Takahiro, T., Diki, P. M., Norio, S., and Nobuhiro, K. (2023). Synthesis and characterization of columbite type solid solution structured niobate Mg 1− x Ca x Nb 2 O 6. Journal of the Ceramic Society of Japan, 131(8), 355-362.

Mulus, D. A. S., Permana, M. D., Hayaa’Prawiranegara, S. P., Tustika, C. Z., Putri, S. P., Zahra, S. A., and Eddy, D. R. (2025). Enhanced performance of spin-coated silver-modified titanium dioxide thin films over dip coating method for metformin photodegradation. Results in Optics, 100838.

Maesaroh, K., Permana, M. D., Eddy, D. R., and Rahayu, I. (2023). The effect of different synthesis with chemical and biological methods on properties of silver oxide nanoparticles. Trends in Sciences, 20(3), 4350-4350.

Boukhvalov, D. W., Paolucci, V., D’Olimpio, G., Cantalini, C., and Politano, A. (2021). Chemical reactions on surfaces for applications in catalysis, gas sensing, adsorption-assisted desalination and Li-ion batteries: opportunities and challenges for surface science. Physical Chemistry Chemical Physics, 23(13), 7541-7552.

Liu, X., Xia, Z., Wang, Y., Luo, D., Li, Z., Meng, Z., and Lian, H. (2024). Zinc-doped inorganic bioactive materials: a comprehensive review of properties and their applications in osteogenesis, antibacterial, and hemostasis. Applied Materials Today, 40, 102393.

Balakrishnan, S., Padmanabhan, V. P., Kulandaivelu, R., Nellaiappan, T. S. N., Sagadevan, S., Paiman, S., and Oh, W. C. (2021). Influence of iron doping towards the physicochemical and biological characteristics of hydroxyapatite. Ceramics International, 47(4), 5061-5070.

Mostafa, N. Y. (2005). Characterization, thermal stability and sintering of hydroxyapatite powders prepared by different routes. Materials Chemistry and Physics, 94(2-3), 333-341.

Ressler, A., Žužić, A., Ivanišević, I., Kamboj, N., & Ivanković, H. (2021). Ionic substituted hydroxyapatite for bone regeneration applications: A review. Open Ceramics, 6, 100122.

Cotrut, C. M., Blidisel, A., Vranceanu, D. M., Vladescu, A., Ungureanu, E., Pana, I., and Titorencu, I. (2024). Evaluation of the in vitro behavior of electrochemically deposited plate-like crystal hydroxyapatite coatings. Biomimetics, 9(11), 704.




DOI: https://doi.org/10.17509/ajse.v5i3.88775

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Universitas Pendidikan Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

ASEAN Journal of Science and Engineering (AJSE) is published by UPI 

View My Stats