Pengujian Correctness Data Kartu Pembayaran pada Aplikasi E-commerce Menggunakan FitNesse
Abstract
Keywords
Full Text:
PDFReferences
V. Shankar, A. Venkatesh, C. Hofacker, and P. Naik, “Mobile marketing in the retailing environment: current insights and future research avenues,” J. Interact. Mark., vol. 24, no. 2, pp. 111–120, 2010.
N. F. Ryman-Tubb, P. Krause, and W. Garn, “How Artificial Intelligence and machine learning research impacts payment card fraud detection: A survey and industry benchmark,” Eng. Appl. Artif. Intell., vol. 76, pp. 130–157, 2018.
I. Sakharova, “Payment card fraud: Challenges and solutions,” in 2012 IEEE international conference on intelligence and security informatics, 2012, pp. 227–234.
D. Galin, Software quality assurance: from theory to implementation. Pearson education, 2004.
W.-T. Tsai, Y. Na, R. Paul, F. Lu, and A. Saimi, “Adaptive scenario-based object-oriented test frameworks for testing embedded systems,” in Proceedings 26th Annual International Computer Software and Applications, 2002, pp. 321–326.
R. S. Pressman, Software engineering: a practitioner’s approach. Palgrave macmillan, 2005.
S. B. E. Raj and A. A. Portia, “Analysis on credit card fraud detection methods,” in 2011 International Conference on Computer, Communication and Electrical Technology (ICCCET), 2011, pp. 152–156.
DOI: https://doi.org/10.17509/jatikom.v7i1.31322
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Jurnal Aplikasi dan Teori Ilmu Komputer

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
JATIKOM is published by Universitas Pendidikan Indonesia
Jl. Dr. Setiabudhi 229 Bandung 40154, West Java, Indonesia
Website: http://www.upi.edu