The Role of Big Data in Financial Reporting Quality: A Bibliometric Analysis

Panisha Mustikarini, Indira Januarti

Abstract


This research focuses on the possibilities of Big Data Analytics (BDA) to increase greatly financial reporting quality (FRQ) and develop the knowledge base and conceptual framework inside this field of activity. The researcher investigated publications, including authors, journals, keywords, co-citations, thematic development, and topic trends, using a bibliometric method and the Biblioshiny tool. According to the analytical results, five primary clusters of profit management detection, financial statement manipulation theory, corporate governance, machine learning, and data mining techniques define the use of Big Data Analytics in the Financial Reporting Quality study. The key findings reveal that data mining and machine learning are the most often utilized and successful approaches for identifying deceptive behavior in financial reporting. Moreover, narrative report analysis helps BDA to enhance detecting skills. Artificial intelligence, deep learning, and machine learning are rising technologies projected to be the key subjects of future financial reporting quality studies.


Keywords


bibliometric analysis, financial reporting quality, big data analytics, deep learning, data mining

Full Text:

PDF

References


Abdelhalim, A. M. (2024). How management accounting practices integrate with big data analytics and its impact on corporate sustainability. Journal of Financial Reporting and Accounting, 22(2), 416–432. https://doi.org/10.1108/JFRA-01-2023-0053

Aboelfotoh, A., Zamel, A. M., Abu-Musa, A. A., Frendy, F., Sabry, S. H., & Moubarak, H. (2024). Examining the ability of big data analytics to investigate financial reporting quality: a comprehensive bibliometric analysis. Journal of Financial Reporting and Accounting. https://doi.org/10.1108/JFRA-11-2023-0689

Aftabi, S. Z., Ahmadi, A., & Farzi, S. (2023). Fraud detection in financial statements using data mining and GAN models. Expert Systems with Applications, 227, 120144. https://doi.org/10.1016/j.eswa.2023.120144

Agrawal, R., Wankhede, V. A., Kumar, A., Luthra, S., & Huisingh, D. (2022). Big data analytics and sustainable tourism: A comprehensive review and network based analysis for potential future research. International Journal of Information Management Data Insights, 2(2), 100122. https://doi.org/10.1016/j.jjimei.2022.100122

Ahmad, F. (2019). A systematic review of the role of Big Data Analytics in reducing the influence of cognitive errors on the audit judgement. Revista de Contabilidad-Spanish Accounting Review, 22(2), 187–202. https://doi.org/10.6018/rcsar.382251

Akter, S., & Wamba, S. F. (2019). Big data and disaster management: a systematic review and agenda for future research. Annals of Operations Research, 283(1–2), 939–959. https://doi.org/10.1007/s10479-017-2584-2

Al-Sai, Z. A., Husin, M. H., Syed-Mohamad, S. M., Abdin, R. M. S., Damer, N., Abualigah, L., & Gandomi, A. H. (2022). Explore Big Data Analytics Applications and Opportunities: A Review. Big Data and Cognitive Computing, 6(4), 157. https://doi.org/10.3390/bdcc6040157

Alam, N., Gao, J., & Jones, S. (2021). Corporate failure prediction: An evaluation of deep learning vs discrete hazard models. Journal of International Financial Markets, Institutions and Money, 75, 101455. https://doi.org/10.1016/j.intfin.2021.101455

Ali, A. Al, Khedr, A. M., El-Bannany, M., & Kanakkayil, S. (2023). A Powerful Predicting Model for Financial Statement Fraud Based on Optimized XGBoost Ensemble Learning Technique. Applied Sciences (Switzerland), 13(4), 2272. https://doi.org/10.3390/app13042272

Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://doi.org/10.1016/j.joi.2017.08.007

Aria, M., Misuraca, M., & Spano, M. (2020). Mapping the Evolution of Social Research and Data Science on 30 Years of Social Indicators Research. Social Indicators Research, 149(3), 803–831. https://doi.org/10.1007/s11205-020-02281-3

Ashtiani, M. N., & Raahemi, B. (2022). Intelligent Fraud Detection in Financial Statements Using Machine Learning and Data Mining: A Systematic Literature Review. IEEE Access, 10, 72504–72525. https://doi.org/10.1109/ACCESS.2021.3096799

Azzam, M. E. A. Y., Alsayed, M. S. H., Alsultan, A., & Hassanein, A. (2024). How big data features drive financial accounting and firm sustainability in the energy industry. Journal of Financial Reporting and Accounting, 22(1), 29–51. https://doi.org/10.1108/JFRA-03-2023-0125

Blazquez, D., & Domenech, J. (2018). Big Data sources and methods for social and economic analyses. Technological Forecasting and Social Change, 130, 99–113. https://doi.org/10.1016/j.techfore.2017.07.027

Btoush, E. A. L. M., Zhou, X., Gururajan, R., Chan, K. C., Genrich, R., & Sankaran, P. (2023). A systematic review of literature on credit card cyber fraud detection using machine and deep learning. PeerJ Computer Science, 9. https://doi.org/10.7717/PEERJ-CS.1278

Choi, S. U., Lee, K. C., & Na, H. J. (2022). Exploring the deep neural network model’s potential to estimate abnormal audit fees. Management Decision, 60(12), 3304–3323. https://doi.org/10.1108/MD-07-2021-0954

Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285–296. https://doi.org/10.1016/j.jbusres.2021.04.070

Dutta, I., Dutta, S., & Raahemi, B. (2017). Detecting financial restatements using data mining techniques. Expert Systems with Applications, 90, 374–393. https://doi.org/10.1016/j.eswa.2017.08.030

Fahimnia, B., Sarkis, J., & Davarzani, H. (2015). Green supply chain management: A review and bibliometric analysis. International Journal of Production Economics, 162, 101–114. https://doi.org/10.1016/j.ijpe.2015.01.003

Fauzi, M. A., Kamaruzzaman, Z. A., & Abdul Rahman, H. (2023). Bibliometric review on human resources management and big data analytics. International Journal of Manpower, 44(7), 1307–1327. https://doi.org/10.1108/IJM-05-2022-0247

Fosso Wamba, S., & Mishra, D. (2017). Big data integration with business processes: a literature review. Business Process Management Journal, 23(3), 477–492. https://doi.org/10.1108/BPMJ-02-2017-0047

Framework, C. (2018). Conceptual framework for financial reporting. IFRS Foundation.

Galetsi, P., & Katsaliaki, K. (2020). A review of the literature on big data analytics in healthcare. Journal of the Operational Research Society, 71(10), 1511–1529. https://doi.org/10.1080/01605682.2019.1630328

Gupta, S., & Mehta, S. K. (2024). Data Mining-based Financial Statement Fraud Detection: Systematic Literature Review and Meta-analysis to Estimate Data Sample Mapping of Fraudulent Companies Against Non-fraudulent Companies. Global Business Review, 25(5), 1290–1313. https://doi.org/10.1177/0972150920984857

Hajek, P., & Henriques, R. (2017). Mining corporate annual reports for intelligent detection of financial statement fraud – A comparative study of machine learning methods. Knowledge-Based Systems, 128, 139–152. https://doi.org/10.1016/j.knosys.2017.05.001

Hennes, K. M., Leone, A. J., & Miller, B. P. (2008). The importance of distinguishing errors from irregularities in restatement research: The case of restatements and CEO/CFO turnover. Accounting Review, 83(6), 1487–1519. https://doi.org/10.2308/accr.2008.83.6.1487

Hilal, W., Gadsden, S. A., & Yawney, J. (2022). Financial Fraud: A Review of Anomaly Detection Techniques and Recent Advances. Expert Systems with Applications, 193, 116429. https://doi.org/10.1016/j.eswa.2021.116429

Hsieh, T.-J., Hsiao, H.-F., & Yeh, W.-C. (2012). Mining financial distress trend data using penalty guided support vector machines based on hybrid of particle swarm optimization and artificial bee colony algorithm. Neurocomputing, 82, 196–206. https://doi.org/https://doi.org/10.1016/j.neucom.2011.11.020

Ibrahim, A. E. A., Elamer, A. A., & Ezat, A. N. (2021). The convergence of big data and accounting: innovative research opportunities. Technological Forecasting and Social Change, 173. https://doi.org/10.1016/j.techfore.2021.121171

Inamdar, Z., Raut, R., Narwane, V. S., Gardas, B., Narkhede, B., & Sagnak, M. (2020). A systematic literature review with bibliometric analysis of big data analytics adoption from period 2014 to 2018. Journal of Enterprise Information Management, 34(1), 101–139. https://doi.org/10.1108/JEIM-09-2019-0267

Jan, C. L. (2018). An effective financial statements fraud detection model for the sustainable development of financial markets: Evidence from Taiwan. Sustainability (Switzerland), 10(2). https://doi.org/10.3390/su10020513

Kazemi, M. Z., Elamer, A. A., Theodosopoulos, G., & Khatib, S. F. A. (2023). Reinvigorating research on sustainability reporting in the construction industry: A systematic review and future research agenda. Journal of Business Research, 167. https://doi.org/10.1016/j.jbusres.2023.114145

Kirkos, E., Spathis, C., & Manolopoulos, Y. (2007). Data Mining techniques for the detection of fraudulent financial statements. Expert Systems with Applications, 32(4), 995–1003. https://doi.org/10.1016/j.eswa.2006.02.016

Lamboglia, R., Lavorato, D., Scornavacca, E., & Za, S. (2020). Exploring the relationship between audit and technology. A bibliometric analysis. Meditari Accountancy Research, 29(5), 1233–1260. https://doi.org/10.1108/MEDAR-03-2020-0836

Leung, X. Y., Sun, J., & Bai, B. (2017). Bibliometrics of social media research: A co-citation and co-word analysis. International Journal of Hospitality Management, 66, 35–45. https://doi.org/10.1016/j.ijhm.2017.06.012

Li, F. (2010). The information content of forward- looking statements in corporate filings-A naïve bayesian machine learning approach. Journal of Accounting Research, 48(5), 1049–1102. https://doi.org/10.1111/j.1475-679X.2010.00382.x

Li, R., Liu, B., Yuan, X., & Chen, Z. (2023). A bibliometric analysis of research on R-loop: Landscapes, highlights and trending topics. DNA Repair, 127. https://doi.org/10.1016/j.dnarep.2023.103502

Liou, F. M. (2008). Fraudulent financial reporting detection and business failure prediction models: A comparison. Managerial Auditing Journal, 23(7), 650–662. https://doi.org/10.1108/02686900810890625

Mandal, A., & Amilan, S. (2023). Preventing financial statement fraud in the corporate sector: insights from auditors. Journal of Financial Reporting and Accounting. https://doi.org/10.1108/JFRA-02-2023-0101

Mohamed, A., Najafabadi, M. K., Wah, Y. B., Zaman, E. A. K., & Maskat, R. (2020). The state of the art and taxonomy of big data analytics: view from new big data framework. Artificial Intelligence Review, 53(2), 989–1037. https://doi.org/10.1007/s10462-019-09685-9

Nan, X., Sun, X., Li, Y., & Hou, T. (2012). Weighted-Support Vector Machine based earnings management detection during IPOs. Journal of Information and Computational Science, 9(9), 2607–2617.

Omar, N., Johari, Z. A., & Smith, M. (2017). Predicting fraudulent financial reporting using artificial neural network. Journal of Financial Crime, 24(2), 362–387. https://doi.org/10.1108/JFC-11-2015-0061

Page, M. J., McKenzie, J. E., Bossuyt, P., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The prisma 2020 statement: An updated guideline for reporting systematic reviews. Medicina Fluminensis, 57(4), 444–465. https://doi.org/10.21860/medflum2021_264903

Pattnaik, D., Ray, S., & Raman, R. (2024). Applications of artificial intelligence and machine learning in the financial services industry: A bibliometric review. Heliyon, 10(1). https://doi.org/10.1016/j.heliyon.2023.e23492

Perols, J. L., Bowen, R. M., Zimmermann, C., & Samba, B. (2017). Finding needles in a haystack: Using data analytics to improve fraud prediction. Accounting Review, 92(2), 221–245. https://doi.org/10.2308/accr-51562

Ragothaman, S., & Lavin, A. (2008). Restatements Due to Improper Revenue Recognition: A Neural Networks Perspective. Journal of Emerging Technologies in Accounting, 5(1), 129–142. https://doi.org/10.2308/jeta.2008.5.1.129

Rahman, M. J., & Zhu, H. (2023). Predicting accounting fraud using imbalanced ensemble learning classifiers – evidence from China. Accounting and Finance, 63(3), 3455–3486. https://doi.org/10.1111/acfi.13044

Ravisankar, P., Ravi, V., Raghava Rao, G., & Bose, I. (2011). Detection of financial statement fraud and feature selection using data mining techniques. Decision Support Systems, 50(2), 491–500. https://doi.org/10.1016/j.dss.2010.11.006

Rialti, R., Marzi, G., Ciappei, C., & Busso, D. (2019). Big data and dynamic capabilities: a bibliometric analysis and systematic literature review. Management Decision, 57(8), 2052–2068. https://doi.org/10.1108/MD-07-2018-0821

Rusydiana, A. S., Laila, N., Tubastuvi, N., Ibrahim, M. A., & Marlina, L. (2021). Energy efficiency in oic countries: Sdg 7 output. International Journal of Energy Economics and Policy, 11(1), 74–81. https://doi.org/10.32479/ijeep.10499

Sahoo, S. (2022). Big data analytics in manufacturing: a bibliometric analysis of research in the field of business management. International Journal of Production Research, 60(22), 6793–6821. https://doi.org/10.1080/00207543.2021.1919333

Saleh, I., Abu Afifa, M., Alkhawaja, A., & Marei, Y. (2023). Big Data Analytics and Sustainability Accounting and Reporting: Evidence from Canada. Studies in Big Data, 135, 313–321. https://doi.org/10.1007/978-3-031-42463-2_29

Santhikumar, R., Kartillkayani, K., Mishra, M. K., Thota, S., Beschi, I.

S., & Mishra, B. P. (2022). Utilization of Big Data Analytics for Risk Management. 4th International Conference on Inventive Research in Computing Applications, ICIRCA 2022 - Proceedings, 1559–1565. https://doi.org/10.1109/ICIRCA54612.2022.9985709

Shahana, T., Lavanya, V., & Bhat, A. R. (2023). State of the art in financial statement fraud detection: A systematic review. Technological Forecasting and Social Change, 192. https://doi.org/10.1016/j.techfore.2023.122527

Sivarajah, U., Kamal, M. M., Irani, Z., & Weerakkody, V. (2017). Critical analysis of Big Data challenges and analytical methods. Journal of Business Research, 70, 263–286. https://doi.org/10.1016/j.jbusres.2016.08.001

Soltani, M., Kythreotis, A., & Roshanpoor, A. (2023). Two decades of financial statement fraud detection literature review; combination of bibliometric analysis and topic modeling approach. Journal of Financial Crime, 30(5), 1367–1388. https://doi.org/10.1108/JFC-09-2022-0227

Tambuskar, D. P., Jain, P., & Narwane, V. S. (2024). An exploration into the factors influencing the implementation of big data analytics in sustainable supply chain management. Kybernetes, 53(5), 1710–1739. https://doi.org/10.1108/K-07-2022-1057

Tang, J., & Karim, K. E. (2019). Financial fraud detection and big data analytics – implications on auditors’ use of fraud brainstorming session. Managerial Auditing Journal, 34(3), 324–337. https://doi.org/10.1108/MAJ-01-2018-1767

Teixeira, J. F., & Rodrigues, L. L. (2022). Earnings management: a bibliometric analysis. International Journal of Accounting and Information Management, 30(5), 664–683. https://doi.org/10.1108/IJAIM-12-2021-0259

Tranfield, D., Denyer, D., & Smart, P. (2003). Towards a Methodology for Developing Evidence-Informed Management Knowledge by Means of Systematic Review. British Journal of Management, 14(3), 207–222. https://doi.org/10.1111/1467-8551.00375

Warren, J. D., Moffitt, K. C., & Byrnes, P. (2015). How big data will change accounting. Accounting Horizons, 29(2), 397–407. https://doi.org/10.2308/acch-51069

Xiuguo, W., & Shengyong, D. (2022). An Analysis on Financial Statement Fraud Detection for Chinese Listed Companies Using Deep Learning. IEEE Access, 10, 22516–22532. https://doi.org/10.1109/ACCESS.2022.3153478

Zhou, W., & Kapoor, G. (2011). Detecting evolutionary financial statement fraud. Decision Support Systems, 50(3), 570–575. https://doi.org/10.1016/j.dss.2010.08.007

Zupic, I., & Čater, T. (2015). Bibliometric Methods in Management and Organization. Organizational Research Methods, 18(3), 429–472. https://doi.org/10.1177/1094428114562629




DOI: https://doi.org/10.17509/jrak.v13i2.86178

Refbacks

  • There are currently no refbacks.


Creative Commons License

Jurnal Riset Akuntansi dan Keuangan  is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View My Stats