The Investigation of Convolution Layer Structure on BERT-C-LSTM for Topic Classification of Indonesian News Headlines
Abstract
Keywords
Full Text:
PDFReferences
Chen, Y., Perozzi, B., Al-Rfou, R., & Skiena, S. (2013). The Expressive Power of Word Embeddings. 28.
Chowdhury, P., Eumi, E. M., Sarkar, O., & Ahamed, M. F. (2022). Bangla News Classification Using GloVe Vectorization, LSTM, and CNN. Lecture Notes on Data Engineering and Communications Technologies, 95(December 2021), 723–731. https://doi.org/10.1007/978-981-16-6636-0_54
Dong, J., He, F., Guo, Y., & Zhang, H. (2020). A commodity review sentiment analysis based on BERT-CNN model. 2020 5th International Conference on Computer and Communication Systems, ICCCS 2020, 143–147. https://doi.org/10.1109/ICCCS49078.2020.9118434
Ezen-Can, A. (2020). A Comparison of LSTM and BERT for Small Corpus. 1–12.
Fauzi, M. A. (2018). Automatic Complaint Classification System Using Classifier Ensembles. Telfor Journal, 10(2), 123–128. https://doi.org/10.5937/telfor1802123A
González-Carvajal, S., & Garrido-Merchán, E. C. (2020). Comparing BERT against traditional machine learning text classification. Ml.
Ingole, P., Bhoir, S., & Vidhate, A. V. (2018). Hybrid Model for Text Classification. Proceedings of the 2nd International Conference on Electronics, Communication and Aerospace Technology, ICECA 2018, Iaeac, 450–458. https://doi.org/10.1109/ICECA.2018.8474920
James Mutinda, Mwangi, W., & Okeyo, G. (2023). Sentiment Analysis of Text Reviews Using Lexicon-Enhanced Bert Embedding (LeBERT) Model with Convolutional Neural Network. Appl. Sci, 13(1445). https://doi.org/10.3390/app13031445
Kandhro, I. A., Jumani, S. Z., Kumar, K., Hafeez, A., & Ali, F. (2020). Roman Urdu Headline News Text Classification Using RNN, LSTM and CNN. Advances in Data Science and Adaptive Analysis, 12(02), 2050008. https://doi.org/10.1142/s2424922x20500084
Kaur, K., & Kaur, P. (2023). BERT-CNN: Improving BERT for Requirements Classification using CNN. Procedia Computer Science, 218(2022), 2604–2611. https://doi.org/10.1016/j.procs.2023.01.234
Koto, F., Rahimi, A., Lau, J. H., & Baldwin, T. (2020). IndoLEM and IndoBERT: A Benchmark Dataset and Pre-trained Language Model for Indonesian NLP. 757–770. https://doi.org/10.18653/V1/2020.COLING-MAIN.66
Li, W., Gao, S., Zhou, H., Huang, Z., Zhang, K., & Li, W. (2019). The automatic text classification method based on bert and feature union. Proceedings of the International Conference on Parallel and Distributed Systems - ICPADS, 2019-Decem, 774–777. https://doi.org/10.1109/ICPADS47876.2019.00114
Maslennikova, E. (2019). ELMo Word Representation For News Protection.
Murfi, H., Gowandi, T., Ardaneswari, G., & Nur-, S. (2022). BERT-Based Combination of Convolutional and Recurrent Neural Network for Indonesian Sentiment Analysis. 1–15.
Pogiatzis, A. (2019). NLP: Contextualized word embeddings from BERT.
Safaya, A., Abdullatif, M., & Yuret, D. (2020). KUISAIL at SemEval-2020 Task 12: BERT-CNN for Offensive Speech Identification in Social Media. 14th International Workshops on Semantic Evaluation, SemEval 2020 - Co-Located 28th International Conference on Computational Linguistics, COLING 2020, Proceedings, 2054–2059. https://doi.org/10.18653/v1/2020.semeval-1.271
Wang, J., Wang, Z., Zhang, D., & Yan, J. (2017). Combining knowledge with deep convolutional neural networks for short text classification. IJCAI International Joint Conference on Artificial Intelligence, 0, 2915–2921. https://doi.org/10.24963/ijcai.2017/406
Widhiyasana, Y., Semiawan, T., Gibran, I., Mudzakir, A., & Noor, M. R. (2021). Penerapan Convolutional Long Short-Term Memory untuk Klasifikasi Teks Berita Bahasa Indonesia (Convolutional Long Short-Term Memory Implementation for Indonesian News Classification). Jurnal Nasional Teknik Elektro Dan Teknologi Informasi |, 10(4), 354–361.
Zhang, Z., Zhao, H., & Wang, R. (2020). Machine Reading Comprehension: The Role of Contextualized Language Models and Beyond.
Zhou, C., Sun, C., Liu, Z., & Lau, F. C. M. (2015). A C-LSTM Neural Network for Text Classification. October 2017.
Zhou, H. (2022). Research of Text Classification Based on TF-IDF and CNN-LSTM. Journal of Physics: Conference Series, 2171(1). https://doi.org/10.1088/1742-6596/2171/1/012021
DOI: https://doi.org/10.17509/seict.v4i2.63742
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Journal of Software Engineering, Information and Communication Technology (SEICT)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Journal of Software Engineering, Information and Communicaton Technology (SEICT),
(e-ISSN:2774-1699 | p-ISSN:2744-1656) published by Program Studi Rekayasa Perangkat Lunak, Kampus UPI di Cibiru.
Indexed by.