Comparison of Machine Learning Algorithms in the Role of Hepatitis Patient Disease Classification
Abstract
Hepatitis is one of the diseases with the highest patient percentage. about a third of the world population are afflicted with hepatitis. In several cases, patients show symptoms while in the other cases, patients show no symptoms. hepatitis is commonly caused by hepatitis A, B, C, D or E virus and yellow fever virus (YFV). hepatitis can be detected through blood test. From the blood sample, we could extract information like Alanine Transferase (ALT), bilirubin, creatine, Alkaline Phosphatase (ALP), Aspartate Aminotransferase (AST) and Gamma Glutamyl Transferase (GGT) levels, the levels of these compound will be able to determine whether the patient is afflicted or not. To raise the information processing effectiveness, machine learning can be applied to help processing the information. Several algorithms like support vector machine (SVM), decision tree, K-Nearest Neighbor (KNN), Random Forest and X-Gradient Boost (XGBoost) can be used to process hepatitis data. This research is aimed to determine which algorithm has the highest accuracy in diagnosing hepatitis.
Full Text:
PDFReferences
M. Jefferies, B. Rauff, H. Rashid, T. Lam, and S. Rafiq, “Update on global epidemiology of viral hepatitis and preventive strategies,” WJCC, vol. 6, no. 13, pp. 589–599, 2018.
I. C. Education, “What is Machine Learning?,” ibm.com, 2020.
https://www.ibm.com/cloud/learn/machine-learning.
Admin, “Guide To Data Cleaning: Definition, Benefits, Components, And How To Clean Your
Data,” tableau.com, 2020. https://www.tableau.com/learn/articles/what-is-data-cleaning.
E. D. Wahyuni, A. A. Arifiyanti, and M. Kustyani, “Exploratory Data Analysis dalam Konteks Klasifikasi Data Mining,” Pros. Nas. Rekayasa Teknol. Ind. dan Inf. XIV Tahun 2019, vol. 2019, no. November, pp. 263–269, 2019, [Online].
A. Nikmatul Kasanah and U. Pujianto, “Terakreditasi SINTA Peringkat 2 Penerapan Teknik SMOTE untuk Mengatasi Imbalance Class dalam Klasifikasi Objektivitas Berita Online Menggunakan Algoritma KNN,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 1, no. 3, pp. 196–201, 2017.
A. Byna and M. Basit, “Penerapan Metode Adaboost Untuk Mengoptimasi Prediksi Penyakit Stroke Dengan Algoritma Naïve Bayes,” J. Sisfokom (Sistem Inf. dan Komputer), vol. 9, no. 3, pp. 407–411,
, doi: 10.32736/sisfokom.v9i3.1023.
A. Handayani, A. Jamal, and A. A. Septiandri, “Evaluasi Tiga Jenis Algoritme Berbasis Pembelajaran Mesin untuk Klasifikasi Jenis Tumor Payudara,” vol. 6, no. 4, pp. 394–403, 2017.
F. Rachman and S. W. Purnama, “Perbandingan Klasifikasi Tingkat Keganasan Breast Cancer Dengan Menggunakan Regresi Logistik Ordinal Dan Support Vector Machine ( SVM ),” J. Sains Dan Seni Its, vol. 1, no. 1, pp. 130–135, 2012.
N. A. Setifani, D. N. Fitriana, and A. Yusuf, “Perbandingan Algoritma Naïve Bayes, Svm, Dan Decision Tree Untuk Klasifikasi Sms Spam,” JUSIM (Jurnal Sist. Inf. Musirawas), vol. 5, no. 02, pp. 153–160, 2020, doi: 10.32767/jusim.v5i02.956.
D. Carty, “Training Data vs. Validation Data vs. Test Data for ML Algorithms,” applause.com, 2021. https://www.applause.com/blog/training-data-validation-data-vs-test-data.
DOI: https://doi.org/10.17509/seict.v4i2.64393
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Journal of Software Engineering, Information and Communication Technology (SEICT)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Journal of Software Engineering, Information and Communicaton Technology (SEICT),
(e-ISSN:2774-1699 | p-ISSN:2744-1656) published by Program Studi Rekayasa Perangkat Lunak, Kampus UPI di Cibiru.
Indexed by.