Morphological Grayscale Pre-processing to SAR Images for Reducing Noise in Ship Detection Based on YOLOv8
Abstract
Keywords
References
Alsalman, H. (2019). Enhancing Digital Mammogram Images using Bandpass Filters in Frequency Domain. 19(11), 107–113.
Choi, H., & Jeong, J. (2019). Speckle noise reduction technique for sar images using statistical characteristics of speckle noise and discrete wavelet transform. Remote Sensing, 11(10). https://doi.org/10.3390/rs11101184
Cumming, I. G., & Wong, F. H. (2005). Digital Processing of Synthetic Aperture Radar Data : Algorithms ad Implementation. Massachusetts. Artech House.
Gelar, T., Pangestu, M., Fikri, M., Taufik, N., Teguh, U., & Hutahaean, J. (2022). Pendeteksian Penggunaan Masker Berbasis Android dan YOLOv5 untuk Media Video Realtime pada Ruang Perkantoran. Jurnal Pendidikan Multimedia (Edsence), 4(2), 75–88. https://doi.org/10.17509/edsence.v4i2.52230
Gonzalez, R. C., & Woods, R. E. (Richard E. (2018). Digital image processing (4th Editio).
Han, X., Zhao, L., Ning, Y., & Hu, J. (2021). ShipYOLO: An Enhanced Model for Ship Detection. Journal of Advanced Transportation, 2021. https://doi.org/10.1155/2021/1060182
Hidayatullah, D. P. (2021). Buku Sakti Deep Learning. Stunning Vision AI Academy.
Hidayatullah, P. (2017). Pengolahan Citra Digital Teori dan Aplikasi Nyata.
Huang, H., Sun, D., Wang, R., Zhu, C., & Liu, B. (2020). Ship Target Detection Based on Improved YOLO Network. Mathematical Problems in Engineering, 2020. https://doi.org/10.1155/2020/6402149
Hussain, M. (2024). YOLOv1 to v8: Unveiling Each Variant-A Comprehensive Review of YOLO. IEEE Access, 12(March), 42816–42833. https://doi.org/10.1109/ACCESS.2024.3378568
Ma, M., & Pang, H. (2023). SP-YOLOv8s: An Improved YOLOv8s Model for Remote Sensing Image Tiny Object Detection. Applied Sciences (Switzerland), 13(14). https://doi.org/10.3390/app13148161
Muhamad Itikap, S., Syahid Abdurrahman, M., Soewono, E. B., & Gelar, T. (2023). Geometry and Color Transformation Data Augmentation for YOLOV8 in Beverage Waste Detection. Journal of Software Engineering, Information and Communication Technology (SEICT), 4(2), 123–138.
Nashuha, S. H., Ali, E. Y. E., & Wijanto, H. (2016). Pemrosesan Raw Data Sar (Synthetic Aperture Radar) menjadi Sar Image Space. E-Proceeding of Engineering, 3(3), 4450–4457.
Onyedinma, E. G., & Onyenwe, I. E. (2023). Image Restoration: A Comparative Analysis of Image De noising Using Different Spatial Filtering Techniques. International Journal of Latest Technology in Engineering, Management,& Applied Science (IJLTEMAS), 12(9), 55–63. https://doi.org/10.51583/IJLTEMAS
Shabbir, Z., Sarosh, A., & Nayyer, M. (2019). Space technology applications for maritime intelligence, surveillance, and reconnaissance. Astropolitics, 17(2), 104–126. https://doi.org/10.1080/14777622.2019.1636634
Syam’ani, S.Hut., M. S. (2019). Dasar-dasar Teknologi SAR. PPIIG ULM.
Wei, S., Zeng, X., Qu, Q., Wang, M., Su, H., & Shi, J. (2020). HRSID: A High-Resolution SAR Images Dataset for Ship Detection and Instance Segmentation. IEEE Access, 8, 120234–120254. https://doi.org/10.1109/ACCESS.2020.3005861
Zhao, C., Fu, X., Dong, J., Qin, R., Chang, J., & Lang, P. (2022). SAR Ship Detection Based on End-to-End Morphological Feature Pyramid Network. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 4599–4611. https://doi.org/10.1109/JSTARS.2022.3150910
DOI: https://doi.org/10.17509/seict.v5i2.75970
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Journal of Software Engineering, Information and Communication Technology (SEICT)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Journal of Software Engineering, Information and Communicaton Technology (SEICT),
(e-ISSN:2774-1699 | p-ISSN:2744-1656) published by Program Studi Rekayasa Perangkat Lunak, Kampus UPI di Cibiru.
Indexed by.