Profil konsistensi representasi dan konsistensi ilmiah fisika pada topik usaha dan energi siswa SMA negeri pada pembelajaran jarak jauh di kabupaten Bandung

Wawan Ruswandi, Parlindungan Sinaga, Purwanto Purwanto

Abstract


Information about the profile of representational consistency and scientific consistency is important to know because they are related to understanding the concept and the student’s ability to use multiple representations, while information about these two abilities is unknown for State Senior High School students in Bandung Regency. Therefore, this study aims to analyze the representational and scientific consistent of post-distance learning senior high school students in the Bandung Regency. The research method used is a survey method with a test for the students after implementation of the learning process on the learning material of work and energy. The sampling technique was cluster random sampling. Data were collected in three schools, which each represent the upper cluster, middle cluster, and lower cluster. The instrument used consisted of eight themes which in each theme there are three questions isomorphic (same context and content) with different representations referring to the Representational Variant of Force Concept Inventory (R-FCI). The sample size is determined based on the Isaac and Michael formula it is obtained that from 450 samples of the research, it found that 17,33% of students are consistent for representational consistency category, 38,45% are moderately consistent, and 44,22% are inconsistent. As for the scientific consistency, it found that 12,44% % of students are consistent, 28,45% are moderately consistent, and 59,11% are inconsistent. These results indicate that students had conceptual difficulties especiallyon the concept of kinetic energy. Based on these, it is necessary to focus on learning to understand concepts through a multi-representation approach so as to support the ability representational and scientific consistent.


Keywords


Representation Consistency; Scientific Consistency; Distance Learning; Multirepresentation; Work and Energy

References


Abidin, Z., Hudaya, A., & Anjani, D. (2020). Efektivitas pembelajaran jarak jauh pada masa pandemi covid-19. Research and Development Journal of Education, 1(1), 131–146.

Ahdar, A., & Natsir, E. (2021). Problematika Guru dan Siswa dalam Proses Pembelajaran Daring pada Masa Pandemic Covid-19 di UPTD SMP Negeri 1 Parepare. AL MA’ARIEF: Jurnal Pendidikan Sosial dan Budaya, 3(2), 101–110.

Aminudin, D., Sutiadi, A., & Samsudin, A. (2015). Profil konsistensi representasi dan konsistensi ilmiah siswa SMP pada konsep gerak. Wahana Elektronik Pendidikan Fisika, 1(3).

Azizah, N., & Astuti, B. (2020). Pengembangan bahan ajar fisika berbasis I-SETS (Islamic, Science, Environment, Technology, Society) terkomplementasi kearifan lokal dan muatan karakter. UPEJ Unnes Physics Education Journal, 9(2), 164–177.

Busyairi, A., Sutrio, S., Gunada, I. W., Harjono, A., Doyan, A., & Munandar, R. (2021). Peningkatan pemahaman konsep calon guru fisika melalui pendekatan multipel representasi. Jurnal Ilmiah Profesi Pendidikan, 6(3), 502–508.

Council, N. R. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. National Academies Press.

Fahrizal, M. B., & Dewi, N. R. (2022). Kajian Teori: Kemampuan Representasi Matematis Siswa Ditinjau Dari Kemandirian Belajar Pada Pembelajaran Prepospec Berbantuan TIK. PRISMA, Prosiding Seminar Nasional Matematika, 5, 507–511.

Gebre, E. (2018). Learning with multiple representations: Infographics as cognitive tools for authentic learning in science literacy. Canadian Journal of Learning and Technology/La revue canadienne de l’apprentissage et de la technologie, 44(1).

Hadi, W. S., & Dwijananti, P. (2015). Pengembangan komik fisika berbasis android sebagai suplemen pokok bahasan radioaktivitas untuk sekolah menengah atas. UPEJ Unnes Physics Education Journal, 4(2).

Hartini, T., Liliasari, S., Setiawan, A., & Ramalis, T. R. (2020). Enhancing-Conceptual-Understanding-And-Critical-Thinking-Skills-Pre-service-Of-Physics-Using-Mechanics-Multi-Representation-mmr. International Journal of Scientific & Technology Research, 9(4), 2994–2998.

Hasbullah, H., Halim, A., & Yusrizal, Y. (2018). Penerapan pendekatan multi Representasi terhadap pemahaman konsep gerak lurus. JIPI (Jurnal IPA & Pembelajaran IPA), 2(2), 69–74.

Kassiavera, S., Suparmi, A., Cari, C., & Sukarmin, S. (2019). Student’s understanding profile about work-energy concept based on multirepresentation skills. AIP Conference Proceedings, 2202(1).

Khairillah, S., & Hartini, T. I. (2020). Penelitian Awal Pengaruh Model dan Pendekatan Pembelajaran terhadap Hasil Belajar Fisika. Prosiding Seminar Pendidikan Fisika FITK UNSIQ, 2(1), 150–153.

Kohl, P. B., & Finkelstein, N. D. (2006). Effect of instructional environment on physics students’ representational skills. Physical Review Special Topics-Physics Education Research, 2(1), 010102.

Kurniasari, L. Y., & Wasis, W. (2021). Analisis kemampuan multi representasi dan kaitannya dengan pemahaman konsep fisika. Jurnal Pijar Mipa, 16(2), 142–150.

Larasati, A. D. P., Ibnu, S., & Santoso, A. (2019). Model Problem Based Learning dengan Pendekatan Multi Representasi untuk Meningkatkan Kemampuan Memecahkan Masalah Siswa dengan Tingkat Self-Efficacy Berbeda. Jurnal Pendidikan: Teori, Penelitian, Dan Pengembangan, 4(6), 828–834.

Leinhardt, G., Zaslavsky, O., & Stein, M. K. (1990). Functions, graphs, and graphing: Tasks, learning, and teaching. Review of educational research, 60(1), 1–64.

Nieminen, P., Savinainen, A., & Viiri, J. (2010). Force Concept Inventory-based multiple-choice test for investigating students’ representational consistency. Physical Review Special Topics-Physics Education Research, 6(2), 020109.

Nieminen, P., Savinainen, A., & Viiri, J. (2012). Relations between representational consistency, conceptual understanding of the force concept, and scientific reasoning. Physical Review Special Topics-Physics Education Research, 8(1), 010123.

Opfermann, M., Schmeck, A., & Fischer, H. E. (2017). Multiple representations in physics and science education–why should we use them? Multiple representations in physics education, 1–22.

Patriot, E. A. (2019). Capaian Kemampuan Multirepresentasi Siswa Pada Materi Usaha Dan Energi Melalui Penerapan Pembelajaran Konseptual Interaktif Dengan Pendekatan Multirepresentasi. Jurnal Inovasi dan Pembelajaran Fisika, 6(2), 152–158.

Sinaga, P. (2013). Improving The Ability to Write Teaching Materials Among Students of Pre-Service Physics Teacher Program Through Learning to Write Activity Using Multimodal Representation in The Subject of School Physics III. Proceeding International seminar on Mathematics Science and Computer Science education, 1. 80-86

Solihah, A., Sinaga, P., & Amsor, A. (2018). Multi representasi momentum dan impuls untuk meningkatkan kognitif dan kemampuan pemecahan masalah siswa SMA. Quantum: Seminar Nasional Fisika, dan Pendidikan Fisika, 338–344.

Sriyansyah, S. P., Suhandi, A., & Saepuzaman, D. (2015). Analisis konsistensi representasi dan konsistensi ilmiah mahasiswa pada konsep gaya menggunakan tes R-FCI. Jurnal Pendidikan IPA Indonesia, 4(1), 75–82.

States, N. L. (1900). Next generation science standards: For states, by states. National Academies Press.




DOI: https://doi.org/10.17509/wapfi.v7i2.43390

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Wawan Ruswandi

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

The Journal Wahana Pendidikan Fisika http://ejournal.upi.edu/index.php/WapFi/ is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

The Journal WaPFi (Wahana Pendidikan Fisika).

All rights reserverd. pISSN 2338-1027 eISSN 2685-4414

Copyright © Faculty of Mathematics and Science Education (FPMIPA) Universitas Pendidikan Indonesia (UPI)