Pendekatan berbasis prototipe lokal yang optimal secara global untuk klasifikasi sistem informasi
Abstract
Keywords
References
Aqel, M. J., Nakshabandi, O. A., & Adeniyi, A. (2019). Decision support systems classification in industry. Periodicals of Engineering and Natural Sciences, 7(2), 774-785.
Chou, Y. L., Moreira, C., Bruza, P., Ouyang, C., & Jorge, J. (2022). Counterfactuals and causability in explainable artificial intelligence: Theory, algorithms, and applications. Information Fusion, 81, 59-83.
Grover, V., & Lyytinen, K. (2015). New state of play in information systems research. MIS quarterly, 39(2), 271-296.
Gu, X., & Li, M. (2021). A multi-granularity locally optimal prototype-based approach for classification. Information Sciences, 569, 157-183.
Hariri, R. H., Fredericks, E. M., & Bowers, K. M. (2019). Uncertainty in big data analytics: survey, opportunities, and challenges. Journal of Big Data, 6(1), 1-16.
Khan, W. Z., Rehman, M. H., Zangoti, H. M., Afzal, M. K., Armi, N., & Salah, K. (2020). Industrial internet of things: Recent advances, enabling technologies and open challenges. Computers & electrical engineering, 81, 106522.
Luck, S. J., & Gaspelin, N. (2017). How to get statistically significant effects in any ERP experiment (and why you shouldn't). Psychophysiology, 54(1), 146-157.
Maass, W., Parsons, J., Purao, S., Storey, V. C., & Woo, C. (2018). Data-driven meets theory-driven research in the era of big data: Opportunities and challenges for information systems research. Journal of the Association for Information Systems, 19(12), 1.
Piro, M. H. A., & Simunovic, S. (2016). Global optimization algorithms to compute thermodynamic equilibria in large complex systems with performance considerations. Computational Materials Science, 118, 87-96.
Shao, J., Huang, F., Yang, Q., & Luo, G. (2017). Robust prototype-based learning on data streams. IEEE Transactions on Knowledge and Data Engineering, 30(5), 978-991.
Souza, M. L. H., da Costa, C. A., de Oliveira Ramos, G., & da Rosa Righi, R. (2020). A survey on decision-making based on system reliability in the context of Industry 4.0. Journal of Manufacturing Systems, 56, 133-156.
Wexler, J., Pushkarna, M., Bolukbasi, T., Wattenberg, M., ViƩgas, F., & Wilson, J. (2019). The what-if tool: Interactive probing of machine learning models. IEEE transactions on visualization and computer graphics, 26(1), 56-65.
DOI: https://doi.org/10.17509/integrated.v5i1.64313
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Universitas Pendidikan Indonesia (UPI)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Journal has been indexed by: