ANALYSIS OF THE REAR WHEEL SHAFT OF THE WHITE HORSE EVO 1 ELECTRIC CAR
Abstract
This research is based on the existence of vehicle conversion activities from combustion motorcycles to electricity. Several parts were replaced or customized during the conversion process. Therefore, an analysis of their quality was required to ensure that the converted vehicles were safe to drive, through a safety analysis. The purpose of this study is to analyze the forces that occur in the rear axle of the White Horse EVO 1 electric car, as well as evaluate the safety factor of the axle against static loads on the vehicle. The method used is descriptive quantitative with a field experiment approach equipped with manual calculations based on engineering mechanics. The calculation results showed that the safety factor values obtained on the left and right axes were 1.25 and 1.28 respectively. This value indicates that the shaft is in a safe condition for static use. The safety factor value obtained shows that the vehicle's wheel shaft is at the minimum limit of structural feasibility. Although the shaft is still relatively safe in static conditions, the safety factor value close to 1.0 indicates high material efficiency but with a very thin margin of safety.
Penelitian dilatarbelakangi oleh adanya kegiatan konversi kendaraan dari motor bakar menjadi listrik. Terdapat beberapa suku cadang yang diganti atau custom pada proses konversi tersebut. Oleh karena itu, diperluka anlisis akan kualitasnya agar kendaraan yang dikonversi aman untuk dikendarai, yaitu melaui analisis keselamatan. Tujuan dari penelitian ini adalah untuk menganalisis gaya-gaya yang terjadi pada poros roda belakang Mobil Listrik White Horse EVO 1, serta mengevaluasi faktor keselamatan (safety factor) poros terhadap beban statis pada kendaraan. Metode yang digunakan adalah kuantitatif deskriptif melalui pendekatan eksperimen lapangan yang dilengkapi perhitungan manual berbasis mekanika teknik. Hasil analisis menunjukkan bahwa nilai safety factor yang diperoleh pada poros kiri dan kanan masing-masing yaitu sebesar 1,25 dan 1,28. Nilai tersebut menunjukkan bahwa poros berada dalam kondisi aman untuk digunakan secara statis. Nilai safety factor yang diperoleh menunjukkan bahwa poros roda kendaraan berada pada batas minimum kelayakan struktural. Meski poros masih tergolong aman dalam kondisi statis, nilai safety factor yang mendekati angka 1,0 menandakan efisiensi material tinggi, namun dengan margin keselamatan yang sangat tipis.
Full Text:
PDFReferences
Ali, M. F., Khan, R. A., & Haider, S. (2022). Experimental Stress Analysis of Transmission Shafts. Engineering Structures, 253, 11. https://doi.org/10.1016/j.engstruct.2021.113723
Arslan, M., Demir, A., & Kaya, O. (2023). Influence of Shaft Diameter On Failure Load Under Static Testing. Materials, 16(5), 43. https://doi.org/10.3390/ma16051743
Azad, A. K., Hossain, M. U., & Mourshed, M. (2021). Environmental and Economic Aspects of Electric Vehicle Adoption. Energy Reports, 7, 550–558. https://doi.org/10.1016/j.egyr.2021.07.098
Bakhtiari, H., Zarei, H., & Ghassemi, M. (2022). Stress Concentration and Life Prediction In Automotive Shafts. International Journal of Automotive Engineering, 13(1), 22–31. https://doi.org/10.22109/IJAE.2021.264636.1700
Bousbaa, M., Mansouri, M., & Bouzid, A. (2023). Stress-Strain Analysis of EV Drive Shafts: Manual VS FEM, Mechanics of Advanced Materials and Structures, 56, 20-32. https://doi.org/10.1080/15376494.2023.2187751
Feng, J., Li, M., & Zhang, X. (2024). Experimental Balancing of Wheel Load in EV Platforms. Applied Mechanics and Materials, 969, 55–63. https://doi.org/10.4028/p-amms.969.55
Guntur, Agus Mulyono, Suryadi, Bambang, & Wibowo, Dwi Rachmadi. (2023). Evaluation of Fatigue and Static Behavior of Mild Carbon Steel Shaft Under Axial Load. International Journal of Mechanical Sciences, 241, 34. https://doi.org/10.1016/j.ijmecsci.2023.108934
Hu, Z., Qian, Y., & Liu, J. (2023). Load Distribution and Fatigue Testing of Electric Axle Shafts. Engineering Failure Analysis, 10, 149. https://doi.org/10.1016/j.engfailanal.2023.107250
Kim, S., Park, J., & Lee, H. (2024). Real-Time Shaft Monitoring Using Digital Twin Technology. Sensors, 24(1), 201. https://doi.org/10.3390/s24010201
Kwon, S., Choi, D., & Lee, M. (2024). Lightweight Design of Aluminum Rear Axles for EVS. Journal of Materials Research and Technology, 25, 1021–1029. https://doi.org/10.1016/j.jmrt.2024.01.023
Lee, J. H., Park, H. Y., & Kim, D. (2021). Experimental Investigation of Load Distribution in Electric Mini-Cars. Applied Sciences, 11(3), 987. https://doi.org/10.3390/app11030987
Liu, H., Yang, C., & Wang, T. (2020). Failure Analysis and Improvement of Axle Shafts For Electric Buses. Engineering Failure Analysis, 114, 45. https://doi.org/10.1016/j.engfailanal.2020.104590
Ma, X., Sun, L., & Zhang, Y. (2021). Numerical Simulation and Experimental Study on Torsional Performance of EV Drive Shafts. Materials, 14(3), 759. https://doi.org/10.3390/ma14030759
Muhammad, N., Saeed, M., & Rashid, A. (2020). Manual Calculation on Shaft Loads In Electric Motorcycles. Journal of Mechanical Engineering and Sciences, 14(2), 711–712. https://doi.org/10.15282/jmes.14.2.2020.02.0562
Prasad, K. S., Ramesh, G., & Rajan, A. (2022). Mechanical Strength Analysis of Steel And Alloy Shafts Under Torsion. Materials Today, 62, 427-432. https://doi.org/10.1016/j.matpr.2022.03.443
Reddy, M. A., Kumar, D. R., & Patel, P. (2020). Structural Analysis of Shafts in Lightweight EVs. International Journal of Vehicle Structures & Systems, 12(2), 170–175. https://doi.org/10.4273/ijvss.12.2.10
Singh, P., Verma, A., & Gupta, R. (2021). Analysis of Carbon Steel Shaft for EVs With Field Data. Journal of Failure Analysis and Prevention, 21, 921–928. https://doi.org/10.1007/s11668-021-01148-3
Song, J., Chen, L., & Xu, H. (2023). Mechanical Behavior of Rear Axle Shafts for Electric Vehicles. Procedia Structural Integrity, 42, 301–308. https://doi.org/10.1016/j.prostr.2023.03.045
Ullah, Z., Khan, S., & Ahmad, N. (2023). FEM-based Optimization of EV Shaft Geometry Under Dynamic Loads. Materials Research Express, 10(4), 45-50. https://doi.org/10.1088/2053-1591/acbf3f
Wang, Y., Zhao, Q., & Lin, F. (2023). Digital Twin-Assisted Fatigue Life Prediction of EV Axle Shafts. Sensors, 23(2), 765. https://doi.org/10.3390/s23020765
Wang, Y., Chen, Z., & Zhang, H. (2022). Enhanced Fatigue Strength Of SCM435 Alloy for Drivetrain Shafts. Materials Characterization, 190, 27. https://doi.org/10.1016/j.matchar.2022.111927
Yadav, R., Mishra, R., & Jain, P. (2024). Experimental and FEM Analysis of Electric Vehicle Transmission Shaft. Materials Today, 80, 912–918. https://doi.org/10.1016/j.matpr.2024.03.207
Zhang, Y., Li, J., & Wang, Z. (2021). Fatigue Reliability Assessment of Automotive Drive Shafts Under Torque Loads. Engineering Failure Analysis, 124, 312. https://doi.org/10.1016/j.engfailanal.2021.105312
Zhang, S., Lu, Y., & Huang, W. (2022). Assessment of Environmental Benefits of Electric Vehicles. Energy Reports, 8, 3350-3359. https://doi.org/10.1016/j.egyr.2022.02.127
Zuo, Y., Ishii, K., & Nakamura, T. (2024). Strength Improvement in Hollow Axle Shafts for EVs. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 18(2), 12. https://doi.org/10.1299/jamdsm.2024jamdsm0003
Refbacks
- There are currently no refbacks.
© 2024 MOTOR: Journal of Automotive Engineering