Potensi Konsumsi Kunyit Dalam Rangka Meningkatkan Performa Olahraga Melalui Peningkatan Mitokondria Biogenesis Otot Skelet

Hamidie Ronald Daniel Ray, Kazumi Masuda


One of physical adaptation at cell level is known as mitochondrial biogenesis. Sport endurance could increase the metabolic characteristic in skeletal muscle, including mitochondrial biogenesis and glucose transporter 4 (GLUT4) improvement. Supplements or food groups containing polyphenol are able to activate cAMP (cyclic adenosine monophosphate), which could increase mitochondrial biogenesis process farther through PGC-1 activation as the master of mitochondrial biogenesis settings. Curcuma, the plan coming from Indonesia (curcuma L), belongs to polyphenol group family. Its ability in improving mitochondrial biogenesis at muscle cell will be explained in this paper. The research of the effect of the combination of curcuma consumption and sport endurance in increasing mitochondrial biogenesis will be seen through AMPK, SIRT1, and PGC1. This paper will also explain the direct target of curcuma in increasing mitochondrial in skeletal muscle. The writer tends to emphasize the second messenger cAMP where this enzyme involves in mitochondrial biogenesis activation. Our previous research indicated that cAMP is the main target and the most important in mitochondrial biogenesis improvement as the effect of sport endurance. At the end of discussion, the writer tries to see how curcuma improve mitochondrial biogenesis through PDE4A enzyme phosphorylation that has a role in changing cAMP to AMP. Based on the previous research, curcuma consumption is potential in increasing mitochondrial biogenesis at skeletal muscle, thus it is expected to have ability in improving athlete performance.



Salah satu bentuk adaptasi dari aktifitas fisik pada tingkat sel adalah yang dikenal dengan mitokondria biogenesis. Olahraga daya tahan/endurance dapat meningkatkan karakteristik metabolic di dalam otot skelet, termasuk diantaranya mitokondria biogenesis dan peningkatan Glucose Transporter 4 (GLUT4). Golongan makanan atau suplemen mengandung poliphenol dapat mengaktifkan cAMP (Cyclic adenosine monophosphate),  yang lebih jauh dapat meningkatkan proses mitokondria biogenesis melalui pengaktifan dari PGC-1a sebagai master pengaturan dari mitokondria biogenesis. Kunyit (curcumin) yang berasal dari tanaman aseli Indonesia curcuma L termasuk golongan keluarga poliphenol dan kemampuannya dalam meningkatkan mitokondria biogenesis di sel otot akan coba di terangkan pada tulisan kali ini. Penelitian efek kombinasi pemberian kunyit dan olahraga daya tahan (endurance) dalam rangka meningkatkan mitokondria biogenesis tampaknya terlihat melalui jalur AMPK, SIRT1 dan PGC1-a. Lebih jauh pada tulisan kali ini juga coba menjelaskan mengenai target langsung dari kunyit dalam meningkatkan mitokondria di otot skelet. Penulis lebih menekankan kepada the second messenger cAMP dimana enzim ini terlibat dalam mengaktifan mitokondria biogenesis. Penelitian kami sebelumnya mengindikasikan bahwa cAMP merupakan target utama dan terpenting dalam peningkatan mitokondria biogenesis sebagai efek dari olahraga daya tahan (endurance). Pada akhir pembahasan, penulis juga coba melihat bagaimana kunyit meningkatkan mitokondria biogenesis melalui investigasi terhadap fosforilasi enzim PDE4A yang berperan dalam mengubah cAMP menjadi AMP. Berdasarkan penelitian sebelumnya maka mengkonsumsi kunyit yang merupakan bahan aseli Indonesia mempunyai potensi dalam peningkatan mitokondria biogenesis pada otot skelet dan diharapkan mempunyai kemampuan dalam meningkatkan performa atlet.



Potensi Konsumsi Kunyit, Performa Olahraga, Mitokondria Biogenesis Otot Skelet

Full Text:



Abusnina, A., Keravis, T., & Lugnier, C. (2009). D020 The polyphenol curcumin inhibits in vitro angiogenesis and cyclic nucleotide phosphodiesterases (PDEs) activities similarly to PDE inhibitors. Archives of Cardiovascular Diseases, 102, Supplement 1, S43. doi: http://dx.doi.org/10.1016/S1875-2136(09)72230-2

Baar, K., Wende, A. R., Jones, T. E., Marison, M., Nolte, L. A., Chen, M., . . . Holloszy, J. O. (2002). Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. Faseb J, 16(14), 1879-1886.

Benton, C. R., Nickerson, J. G., Lally, J., Han, X. X., Holloway, G. P., Glatz, J. F., . . . Bonen, A. (2008). Modest PGC-1alpha overexpression in muscle in vivo is sufficient to increase insulin sensitivity and palmitate oxidation in subsarcolemmal, not intermyofibrillar, mitochondria. J Biol Chem, 283(7), 4228-4240.

Canto, C., Gerhart-Hines, Z., Feige, J. N., Lagouge, M., Noriega, L., Milne, J. C., . . . Auwerx, J. (2009). AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature, 458(7241), 1056-1060.

Chung, J. H., Manganiello, V., & Dyck, J. R. B. (2012). Resveratrol as a calorie restriction mimetic: therapeutic implications. Trends in Cell Biology, 22(10), 546-554. doi: http://dx.doi.org/10.1016/j.tcb.2012.07.004

Collins, S. P., Reoma, J. L., Gamm, D. M., & Uhler, M. D. (2000). LKB1, a novel serine/threonine protein kinase and potential tumour suppressor, is phosphorylated by cAMP-dependent protein kinase (PKA) and prenylated in vivo. Biochem J, 3, 673-680.

Dasgupta, B., & Milbrandt, J. (2007). Resveratrol stimulates AMP kinase activity in neurons. Proceedings of the National Academy of Sciences, 104(17), 7217-7222. doi: 10.1073/pnas.0610068104

Ejaz, A., Wu, D., Kwan, P., & Meydani, M. (2009). Curcumin Inhibits Adipogenesis in 3T3-L1 Adipocytes and Angiogenesis and Obesity in C57/BL Mice. The Journal of Nutrition, 139(5), 919-925. doi: 10.3945/jn.108.100966

Hardie, D. G. (2007). AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol, 8(10), 774-785.

Hawley, S. A., Boudeau, J., Reid, J. L., Mustard, K. J., Udd, L., Makela, T. P., . . . Hardie, D. G. (2003). Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol, 2(4), 24.

Hawley, S. A., Pan, D. A., Mustard, K. J., Ross, L., Bain, J., Edelman, A. M., . . . Hardie, D. G. Calmodulin-dependent protein kinase kinase-β is an alternative upstream kinase for AMP-activated protein kinase. Cell Metabolism, 2(1), 9-19. doi: 10.1016/j.cmet.2005.05.009

Hock, M. B., & Kralli, A. (2009). Transcriptional control of mitochondrial biogenesis and function. Annu Rev Physiol, 71, 177-203.

Hood, D. A. (1985). Invited Review: contractile activity-induced mitochondrial biogenesis in skeletal muscle. J Appl Physiol, 90(3), 1137-1157.

Lelkes, Z., Alföldi, P., Erd’S, A., & Benedek, G. (1998). Rolipram, an Antidepressant That Increases the Availability of cAMP, Transiently Enhances Wakefulness in Rats. Pharmacology Biochemistry and Behavior, 60(4), 835-839. doi: http://dx.doi.org/10.1016/S0091-3057(98)00038-0

Lin, J., Wu, H., Tarr, P. T., Zhang, C.-Y., Wu, Z., Boss, O., . . . Spiegelman, B. M. (2002). Transcriptional co-activator PGC-1[alpha] drives the formation of slow-twitch muscle fibres. [10.1038/nature00904]. Nature, 418(6899), 797-801.

Na, L. X., Zhang, Y. L., Li, Y., Liu, L. Y., Li, R., Kong, T., & Sun, C. H. (2011). Curcumin improves insulin resistance in skeletal muscle of rats. Nutrition, Metabolism and Cardiovascular Diseases, 21(7), 526-533. doi: http://dx.doi.org/10.1016/j.numecd.2009.11.009

Nisoli, E., Tonello, C., Cardile, A., Cozzi, V., Bracale, R., Tedesco, L., . . . Carruba, M. O. (2005). Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science, 310(5746), 314-317.

Ota, H., Eto, M., Kano, M. R., Ogawa, S., Iijima, K., Akishita, M., & Ouchi, Y. (2008). Cilostazol inhibits oxidative stress-induced premature senescence via upregulation of Sirt1 in human endothelial cells. Arterioscler Thromb Vasc Biol, 28(9), 1634-1639.

Piantadosi, C. A., Carraway, M. S., Babiker, A., & Suliman, H. B. (2008). Heme oxygenase-1 regulates cardiac mitochondrial biogenesis via Nrf2-mediated transcriptional control of nuclear respiratory factor-1. Circ Res, 103(11), 1232-1240.

Pilegaard, H., Saltin, B., & Neufer, P. D. (2003). Exercise induces transient transcriptional activation of the PGC-1alpha gene in human skeletal muscle. J Physiol, 546(Pt 3), 851-858.

Ray Hamidie, R. D., Yamada, T., Ishizawa, R., Saito, Y., & Masuda, K. (2015). Curcumin treatment enhances the effect of exercise on mitochondrial biogenesis in skeletal muscle by increasing cAMP levels. Metabolism, 64(10), 1334-1347.

Rodgers, J. T., Lerin, C., Gerhart-Hines, Z., & Puigserver, P. (2008). Metabolic adaptations through the PGC-1 alpha and SIRT1 pathways. FEBS Lett, 582(1), 46-53.

Rouse, M., Younes, A., & Egan, J. M. (2014). Resveratrol and curcumin enhance pancreatic beta-cell function by inhibiting phosphodiesterase activity. J Endocrinol, 223(2), 107-117.

Russell, A. P., Feilchenfeldt, J., Schreiber, S., Praz, M., Crettenand, A., Gobelet, C., . . . Deriaz, O. (2003). Endurance training in humans leads to fiber type-specific increases in levels of peroxisome proliferator-activated receptor-gamma coactivator-1 and peroxisome proliferator-activated receptor-alpha in skeletal muscle. Diabetes, 52(12), 2874-2881.

Sakamoto, K., McCarthy, A., Smith, D., Green, K. A., Grahame Hardie, D., Ashworth, A., & Alessi, D. R. (2005). Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction. Embo J, 24(10), 1810-1820.

Sapkota, G. P., Kieloch, A., Lizcano, J. M., Lain, S., Arthur, J. S., Williams, M. R., . . . Alessi, D. R. (2001). Phosphorylation of the protein kinase mutated in Peutz-Jeghers cancer syndrome, LKB1/STK11, at Ser431 by p90(RSK) and cAMP-dependent protein kinase, but not its farnesylation at Cys(433), is essential for LKB1 to suppress cell vrowth. J Biol Chem, 276(22), 19469-19482.

Shin, D. J., Kim, J. E., Lim, T. G., Jeong, E. H., Park, G., Kang, N. J., . . . Lee, K. W. (2014). 20-O-beta-D-glucopyranosyl-20(S)-protopanaxadiol suppresses UV-Induced MMP-1 expression through AMPK-mediated mTOR inhibition as a downstream of the PKA-LKB1 pathway. J Cell Biochem, 115(10), 1702-1711.

Skalhegg, B. S., & Tasken, K. (2000). Specificity in the cAMP/PKA signaling pathway. Differential expression,regulation, and subcellular localization of subunits of PKA. Front Biosci, 1(5), D678-693.

Stein, S. C., Woods, A., Jones, N. A., Davison, M. D., & Carling, D. (2000). The regulation of AMP-activated protein kinase by phosphorylation. Biochem J, 3, 437-443.

Tasken, K., & Aandahl, E. M. (2004). Localized effects of cAMP mediated by distinct routes of protein kinase A. Physiol Rev, 84(1), 137-167.

Taylor, E. B., Lamb, J. D., Hurst, R. W., Chesser, D. G., Ellingson, W. J., Greenwood, L. J., . . . Winder, W. W. (2005). Endurance training increases skeletal muscle LKB1 and PGC-1alpha protein abundance: effects of time and intensity. Am J Physiol Endocrinol Metab, 289(6), E960-968.

Taylor, E. B., Lamb, J. D., Hurst, R. W., Chesser, D. G., Ellingson, W. J., Greenwood, L. J., . . . Winder, W. W. (2005). Endurance training increases skeletal muscle LKB1 and PGC-1α protein abundance: effects of time and intensity. American Journal of Physiology - Endocrinology and Metabolism, 289(6), E960-E968. doi: 10.1152/ajpendo.00237.2005

Terada, S., Goto, M., Kato, M., Kawanaka, K., Shimokawa, T., & Tabata, I. (2002). Effects of low-intensity prolonged exercise on PGC-1 mRNA expression in rat epitrochlearis muscle. Biochem Biophys Res Commun, 296(2), 350-354. doi: http://dx.doi.org/10.1016/S0006-291X(02)00881-1

Terada, S., & Tabata, I. (2004). Effects of acute bouts of running and swimming exercise on PGC-1alpha protein expression in rat epitrochlearis and soleus muscle. Am J Physiol Endocrinol Metab, 286(2), E208-216.

Williams, R. S., Salmons, S., Newsholme, E. A., Kaufman, R. E., & Mellor, J. (1986). Regulation of nuclear and mitochondrial gene expression by contractile activity in skeletal muscle. J Biol Chem, 261(1), 376-380.

Wu, Z., Huang, X., Feng, Y., Handschin, C., Gullicksen, P. S., Bare, O., . . . Stevenson, S. C. (2006). Transducer of regulated CREB-binding proteins (TORCs) induce PGC-1alpha transcription and mitochondrial biogenesis in muscle cells. Proc Natl Acad Sci U S A, 103(39), 14379-14384. doi: 0606714103 [pii] 10.1073/pnas.0606714103

Wu, Z., Puigserver, P., Andersson, U., Zhang, C., Adelmant, G., Mootha, V., . . . Spiegelman, B. M. (1999). Mechanisms Controlling Mitochondrial Biogenesis and Respiration through the Thermogenic Coactivator PGC-1. Cell, 98(1), 115-124. doi: http://dx.doi.org/10.1016/S0092-8674(00)80611-X

DOI: https://doi.org/10.17509/jpjo.v3i2.12589


  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


View My Stats