Exercise Serum Alters Genes Related Mitochondria in Cardiomyocyte Culture Cell

Ronny Lesmana, Wibowo Budi Prasetyo, Hamidie Ronald Daniel Ray, Vita Murniati Tarawan, Hanna Goenawan, Iwan Setiawan, Yuni Susanti Pratiwi, Nova Sylviana Juliati, Unang Supratman


Exercise-induced hearth muscle adaptation is important for physiological process after exercise. This adaptation will ensure basal mitochondrial homeostasis and as a part of the mitochondria quality control. This process is reflected by equal level of biogenesis stimulation and as well as the selective degradation of old and undesirable mitochondria through fusion or fission cycle and Mitophagy. There is limited information about genetic regulation stimulated by training in cardiomyocytes. We believe there is a specific myokines or protein release in the serum and initiate cardiac muscle adaptation process. In the present study, twelve male wistar rats were appointed to two group: sedentary control and aerobic-intensity (AE, 15m/minute). Rats were trained for running with specific protocol as follows: 30 minutes/day with a 5 times/week interval for 8 weeks. On the last day, serum form control and exercise groups were taken via retro-orbital sinus. Then, 3.105  H9C2 cells (Rat cardiomyocytes cell line)  were cultured and incubated by this serum for 24 hours. After treatment, cell were extracted using trisure for RNA purification and continue with reverse transcriptase PCR. Our data showed that expression of the Pgc-1α, Mfn1, Mfn2, Opa1, Drp1, Pink, and Parkin genes were altered and modulated. Specifically, Mfn1, Mfn2, and Opa1 gene expression levels significantly increased. Interestingly, we did not find significant modulation for  Pgc-1α, Drp1, Pink, and Parkin. Taken together, serum of exercise rats might be contained with myokines or specific protein which was released during training and it altered mitochondrial genes expression in cardiomyocytes culture cell. We believe that myokines release in the serum had a contribution in cardiacmyocyte adaptation.


cardiomyocyte cell line, mitochondrial homeostasis, serum exercise

Full Text:



Chen, Y., Liu, Y. & Dorn, G. W. (2011). Mitochondrial fusion is essential for organelle function and cardiac homeostasis. Circulation Research, 109(12), pp. 1327-1331. DOI: 10.1161/circresaha.111.258723.

Ding, H., Jiang, N., Liu, H., Liu, X., Liu, D., Zhao, F. et al. (2010). Response of mitochondrial fusion and fission protein gene expression to exercise in rat skeletal muscle. Biochimica et biophysica acta, 1800(3), pp. 250-256. DOI: 10.1016/j.bbagen.2009.08.007.

Filadi, R., Pendin, D., & Pizzo, P. (2018). Mitofusin 2: from functions to disease. Cell Death & Disease, 9(3), pp. 1-13. DOI: 10.1038/s41419-017-0023-6.

Friedman, J. R. & Nunnari, J. (2014). Mitochondrial form and function. Nature, 505(7483), pp. 335-343. DOI: 10.1038/nature12985.

Gottlieb, R. A. & Thomas, A. (2017). Mitophagy and Mitochondrial Quality Control Mechanisms in the Heart. Current pathobiology reports, 5(2), pp. 161-169. DOI: 10.1007/s40139-017-0133-y.

Gunadi, J. W., Tarawan, V. M., Daniel Ray, H. R., Wahyudianingsih, R., Lucretia, T., Tanuwijaya, F. et al. (2020). Different training intensities induced autophagy and histopathology appearances potentially associated with lipid metabolism in wistar rat liver.

Heliyon, 6(5), pp. 1-12. DOI: 10.1016/j.heliyon.2020.e03874.

Han, J., Neufer, D., & Pilegaard, H. (2019). Exercise physiology: future opportunities and challenges. Pflügers Archiv - European Journal of Physiology, 471(3), pp. 381-384. DOI: 10.1007/s00424-019-02263-6.

Iglewski, M., Hill, J. A., Lavandero, S., & Rothermel, B. A. (2010). Mitochondrial fission and autophagy in the normal and diseased heart. Current hypertension reports, 12(6), pp. 418-425. DOI: 10.1007/s11906-010-0147-x.

Jin, S. M., Lazarou, M., Wang, C., Kane, L. A., Narendra, D. P., & Youle, R. J. (2010). Mitochondrial membrane potential regulates Pink1 import and proteolytic destabilization by PARL. The Journal of cell biology, 191(5), pp. 933-942. DOI: 10.1083/jcb.201008084.

Jornayvaz, F. R. & Shulman, G. I. (2010). Regulation of mitochondrial biogenesis. Essays in biochemistry, 47, pp. 69-84. DOI: 10.1042/bse0470069.

Kageyama, Y., Hoshijima, M., Seo, K., Bedja, D., Sysa‐Shah, P., Andrabi, S. A., … Sesaki, H. (2014). Parkin-independent mitophagy requires Drp1 and maintains the integrity of mammalian heart and brain. The EMBO journal, 33(23), pp. 2798-2813. DOI: 10.15252/embj.201488658.

Kang, C. & Li, J. L. (2012). Role of PGC-1alpha signaling in skeletal muscle health and disease. Annals of the New York Academy of Sciences, 1271(1), pp. 110-117. DOI: 10.1111/j.1749-6632.2012.06738.x.

Katch, V. L., McArdle, W. D., & Katch, F. I. (2011). Essentials of Exercise Physiology. Lippincott Williams & Wilkins.

Lazarou, M., Sliter, D. A., Kane, L. A., Sarraf, S. A., Wang, C., Burman, J. L. et al. (2015). The ubiquitin kinase Pink1 recruits autophagy receptors to induce mitophagy. Nature, 524(7565), pp. 309-314. DOI: 10.1038/nature14893.

Mishra, P. & Chan, D. C. (2014). Mitochondrial dynamics and inheritance during cell division, development and disease. Nature reviews Molecular cell biology, 15(10), pp. 634-646. 2014/09/23. DOI: 10.1038/nrm3877.

Murphy, E., Ardehali, H., Balaban, R. S., DiLisa, F., Dorn, G. W. 2nd., Kitsis, R. N. et al. (2016). Mitochondrial Function, Biology, and Role in Disease. Circulation Research, 118(21), pp. 1960-1991. DOI: 10.1161/RES.0000000000000104.

Narendra, D. P., Jin, S. M., Tanaka, A., Suen, D.-F., Gautier, C. A., Shen, J. et al. (2010). Pink1 Is Selectively Stabilized on Impaired Mitochondria to Activate Parkin. PLOS Biology, 8(1), pp. 1-22. DOI: 10.1371/journal.pbio.1000298.

Palmer, C. S., Osellame, L. D., Stojanovski, D., & Ryan, M. T. (2011). The regulation of mitochondrial morphology: intricate mechanisms and dynamic machinery. Cellular signalling, 23(10), pp. 1534-1545. DOI: 10.1016/j.cellsig.2011.05.021.

Patel, H., Alkhawam, H., Madanieh, R., Shah, N., Kosmas, C. E., & Vittorio, T. J. (2017). Aerobic vs anaerobic exercise training effects on the cardiovascular system. World Journal Cardiology, 9(2), pp. 134-138. DOI: 10.4330/wjc.v9.i2.134.

Piepoli, M. F., Hoes, A. W., Agewall, S., Albus, C., Brotons, C., Catapano, A. L. et al. (2016). European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts) Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). European Heart Journal, 37(29), pp. 2315-2381. DOI: 10.1093/eurheartj/ehw106.

Ponikowski, P., Voors, A. A., Anker, S. D., Bueno, H., Cleland, J. G. F., & Coast, A. J. S. (2016). ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. European Heart Journal, 18(8), pp. 891-975. DOI: 10.1002/ejhf.592.

Ranieri, M., Brajkovic, S., Riboldi, G., Ronchi, D., Rizzo, F., Bresolin, N. et al. (2013). Mitochondrial Fusion Proteins and Human Diseases Neurology Research International, 2013, pp. 1-11. DOI: 10.1155/2013/293893.

Romanello, V., Guadagnin, E., Gomes, L., Roder, I., Sandri, C., Petersen, Y. et al. (2010). Mitochondrial fission and remodelling contributes to muscle atrophy. The EMBO journal, 29(10), pp. 1774-1785. DOI: 10.1038/emboj.2010.60.

Seo, A. Y., Joseph, A., Dutta, D., Hwang, J. C. Y., Aris, J. P., & Leeuwenburgh, C. (2010). New insights into the role of mitochondria in aging: mitochondrial dynamics and more. Journal of Cell Science, 123(15), pp. 2533–2542. DOI:10.1242/jcs.070490.

Song, M., Gong, G., Burelle, Y., Gustafsson, Å. B., Kitsis, R. N., Matkovich, S. J. et al. (2015). Interdependence of Parkin-Mediated Mitophagy and Mitochondrial Fission in Adult Rat Hearts. Circulation Research, 117(4), pp. 346-351. DOI: 10.1161/circresaha.117.306859.

Song, M., Mihara, K., Chen, Y., Scorrano, L., & Dorn, G. W. (2015). Mitochondrial fission and fusion factors reciprocally orchestrate mitophagic culling in rat hearts and cultured fibroblasts. Cell metabolism, 21(2), 273-286. DOI: 10.1016/j.cmet.2014.12.011.

Sun, N. & Finkel, T. (2015). Cardiac mitochondria: A surprise about size. Journal of Molecular and Cellular Cardiology, 82, pp. 213-215. DOI: 10.1016/j.yjmcc.2015.01.009.

Tam, B. T., Pei, X. M., Yung, B. Y., Yip, S., Chan, L., Wong, C. et al. (2015). Autophagic Adaptations to Long-term Habitual Exercise in Cardiac Muscle. International Journal of Sports Medicine, 36(07), pp. 526-534. 11.03.2015. DOI: 10.1055/s-0034-1398494.

Tarawan, V. M., Gunadi, J. W., Subekti, T. A. B., Widowati, W., & Goenawan, H. (2019). Effect of Acute Physical Exercise with Moderate Intensities on FGF23 Gene Expression in Wistar Rat Heart. Majalah Kedokteran Bandung, 51(4), pp. 221-225. DOI: 10.15395/mkb.v51n4.1844.

Yan, Z., Lira, V. A., & Greene, N. P. (2012). Exercise training-induced regulation of mitochondrial quality. Exercise and sport sciences reviews, 40(3), pp. 159-164. DOI: 10.1097/JES.0b013e3182575599.

Youle, R. J. & van der Bliek, A. M. (2012). Mitochondrial fission, fusion, and stress. Science (New York, NY), 337(6098), pp. 1062-1065. DOI: 10.1126/science.1219855.

DOI: https://doi.org/10.17509/jpjo.v5i2.25547


  • There are currently no refbacks.

Copyright (c) 2020 Ronny Lesmana, Wibowo Budi Prasetyo, Hamidie Ronald Daniel Ray, Vita Murniati Tarawan, Hanna Goenawan, Iwan Setiawan, Yuni Susanti Pratiwi, Nova Sylviana Juliati, Unang Supratman

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


View My Stats