Effect of substrate temperature on quality of copper film catalyst substrate: A Molecular Dynamics Study

Rinaldo Marimpul

Abstract


Copper film growth using thermal evaporation methods was studied using molecular dynamics simulations. The AlSiMgCuFe modified embedded atom method potential was used to describe interaction of Cu-Cu, Si-Si and Cu-Si atoms. Our results showed that the variations of substrate temperature affected crystal structure composition and surface roughness of the produced copper film catalyst substrate. In this study, we observed intermixing phenomenon after deposition process. The increasing of substrate temperature affected the increasing of the total silicon atoms had diffusion into copper film.

Keywords


Molecul dynamics simulation; Thermal evaporation method; Substrate temperature; Crystal structure; Surface roughness; Intermixing phenomenon

Full Text:

PDF

References


Bae, S., Kim, H., Lee, Y., Iijima, S.,. (2010). Roll-to-roll production 0f 30-inch graphene films for transparent electrodes. Nature Nanotechnology, 5, 574-578.

Butler, S. Z., Hollen, S. M., Cao, L., Goldberger J. E. (2013). Progress, challenges and opportunities in two-dimensional material beyond graphene. ACS Nano, 7, 2898-2926.

Echigoya, J., Satoh, T., Ohmi, T. (1993). Thin film reaction and interface structure of Cu on (111) Si. Acta Metallurgica et Materialia, 41, 229-234.

Hidayat, A. F., Rosikhin A., Syuhada, I., Winata, T. (2016). Effect of temperature on Cu structure deposited on Si substrate: A molecular dynamics study. AIP Conference Proceedings, 1710 (1), 030039.

Hou, Q., Hou M., Bardotti, L., Prevel, B., Melinon, P., Perez, A. (2000). Deposition of Au N clusters on Au (111) surfaces: I. Atomic-scale modelling. Physical Review B, 62, 2825-2834.

Jelinek, B., Groh, S., Horstemeyer, M. F., Houze, J., Kim, S. G., Wagner, G. J., Moitra, A., Baskes, M. I. (2012). Modified embedded atom method potential for Al, Si, Mg, Cu and Fe alloys. Physical Review B, 85, 1-17.

Kim, K., Artyukhov, V. I., Regan, W., Liu, Y., Crommie M. F., Yakobson, B. I., Zettl, A. (2012). Ripping graphene: preferred directions. Nano Letters, 12, 293-297.

Marimpul, R., Syuhada, I., Rosikhin, A., Winata, T. (2017). Effect of copper film catalyst substrate thickness on atomic diffusion time as the initiation of the recrystallization stage: a molecular dynamics study. Material Research Express, 4 (3), 034004.

Plimpton, S. (1995). Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 117, 1-19.

Rosikhin, A., Hidayat, A. F., Marimpul, R., Syuhada, I., Winata, T. (2016). Low pressure hand made PVD system for high crystalline metal thin film preparation in micro-nanometer scale. AIP Conference Proceedings, 1710 (1), 030026.

Stukowski, A. (2010). Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool. Modelling and Simulation in Materials and Engineering, 18, 015012.

Syuhada, I., Rosikhin, A., Hidayat, A. F., Noor, F. A., Winata, T. (2016). Molecular dynamics simulation of graphene growth at initial stage on Ni (100) facet for low flux C energy by CVD. AIP Conference Proceedings, 1710 (1), 030060.

Timoshevskii, V., Ke, Y., Guo, H., Gall, D. (2008). The influence of surface roughness on electrical conductance of thin Cu films: an ab initio study. Journal of Applied Physics, 103, 1-4.

Yamada, T., Ishihara, M., Kim, J., Hasegawa, M., Iijima S. (2012). A roll-to-roll microwave plasma chemical vapor deposition process for the production of 294 mm width graphene films at low temperature. Carbon, 50, 2615-2619.

Zhang, J., Liu, C., Fan, J. (2013). Comparison of Cu thin films deposited on Si substrates with different surfaces and temperatures. Applied Surface Science, 276, 417-423.

Zhang, J., Liu, C., Shu, Y., Fan, J. (2012). Growth and properties of Cu thin film deposited on Si (001) substrate: a molecular dynamics simulation study. Applied Surface Science, 261, 690-696.




DOI: http://dx.doi.org/10.17509/ijost.v2i2.7987

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Indonesian Journal of Science and Technology

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Science and Technology is published by UPI.

StatCounter - Free Web Tracker and Counter View My Stats