Characteristics of Jengkol Peel (Pithecellobium jiringa) Biochar Produced at Various Pyrolysis Temperatures for Enhanced Agricultural Waste Management and Supporting Sustainable Development Goals (SDGs)

Ali Rahmat, Adinda Zahrani, Hidayat Hidayat, Fera Arum, Santi Ari Respati, Wiwiek Dwi Susanti, Hari Hariadi, Abdul Mutolib

Abstract


Jengkol peel waste, commonly discarded from households and marketplaces, contributes to environmental pollution due to its lack of nutritional and economic value. Converting this waste into biochar enhances its utility, offering a sustainable solution for waste management. Biochar, rich in carbon, has diverse applications, with its properties significantly influenced by pyrolysis temperature. This study investigates the effect of temperature variations on biochar characteristics. Higher pyrolysis temperatures improved key properties, including pore surface area, total pore volume, fixed carbon content, and mineral composition, particularly phosphorus and magnesium. The most favorable results were obtained at 600°C, where the biochar exhibited optimal porosity, maximum surface area, and the highest fixed carbon content. Additionally, it retained essential macronutrients such as nitrogen, phosphorus, potassium, magnesium, and calcium, making it a promising soil amendment. This research supports sustainable resource utilization and aligns with global sustainability efforts.

Keywords


Biochar; Biomass; Characteristics; Jengkol peel Waste; Pyrolysis; Temperature.

Full Text:

PDF

References


Sari, F. I. P., and Asriza, R. O. (2018). Biosorben kulit jengkol sebagai penyerap logam Pb pada air kolong pasca penambangan timah. Jurnal Sains Teknologi dan Lingkungan, 4(2), 83-89.

Taer, E., and Taslim, R. (2021). The effect of physical activation temperature on physical and electrochemical properties of carbon electrode made from jengkol shell (Pithecellobium jiringa) for supercapacitor application. Materials Today: Proceedings, 44, 3341-3345.

Hasibuan, N. M., Hutapea, S., and Rahman, A. (2022). Utilization of jengkol skin waste as an ingredient to increase the growth and production of shallot (Allium ascalonicum L.). Ilmiah Pertanian (JIPERTA) Journal, 4(1), 32-44.

Prayugo, A. S., Gea, S., Daulay, A., Harahap, M., Siow, J., Goei, R., and Tok, A. I. Y. (2023). Highly fluorescent nitrogen-doped carbon dots derived from jengkol peels (Archindendron pauciflorum) by solvothermal synthesis for sensitive Hg²⁺ ions detection. Biosensors and Bioelectronics: X, 14, 100363.

Rezić, I. (2013). Cellulosic fibers—Biosorptive materials and indicators of heavy metals pollution. Microchemical Journal, 107, 63-69.

Edeh, I. G., and Mašek, O. (2022). The role of biochar particle size and hydrophobicity in improving soil hydraulic properties. European Journal of Soil Science, 73(1), e13138.

Mullen, C. A., Boateng, A. A., Goldberg, N. M., Lima, I. M., Laird, D. A., and Hicks, K. B. (2010). Bio-oil and biochar production from corn cobs and stover by fast pyrolysis. Biomass and Bioenergy, 34, 67-74.

Ashworth, A. J., Sadaka, S., Allen, F. L., Sharara, M. A., and Keyser, P. D. (2014). Influence of pyrolysis temperature and production conditions on switchgrass biochar for use as a soil amendment. BioResources, 9(4), 7622-7635.

Luo, Y., Durenkamp, M., De Nobili, M., Lin, Q., and Brookes, P. C. (2011). Short-term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH. Soil Biology and Biochemistry, 43(11), 2304-2314.

Nandiyanto, A. B. D., Rachmat, L. A., Rahayu, D. L., Azizah, N. N., and Husaeni, D. F. A. (2020). Development of Job sheet Application in Making Biobriquette Based on Coconut (Cocos nucifera) Coir with Variation of Particle Size and Banana (Musa paradisica) Peels for Vocational Students. Journal of Engineering Education Transformations, 34(Special Issue), 132-138.

Irawan, A., Kurniawan, T., Alwan, H., Darisman, D., Pujianti, D., Bindar, Y., Abu Bakar, M. S., and Nandiyanto, A. B. D. (2021). Influence of temperature and holding time of empty fruit bunch slow pyrolysis to phenolic in biocrude oil. Automotive Experiences, 4(3), 150-160.

Nandiyanto, A. B. D., Azizah, N. N., and Girsang, G. C. S. (2022). Optimal design and techno-economic analysis for corncob particles briquettes: A literature review of the utilization of agricultural waste and analysis calculation. Applied Science and Engineering Progress, 15(3), 5508-5508.

Nandiyanto, A. B. D., Kaniawati, I., Kurniawan, T., Farobie, O., and Bilad, M. R. (2024). Chemical reaction mechanism from pyrolysis degradation of polystyrene styrofoam plastic microparticles based on FTIR and GC-MS completed with bibliometric literature review to support sustainable development goals (SDGs). Moroccan Journal of Chemistry, 12(3), 1380-1398.

Nandiyanto, A. B. D., Ragadhita, R., and Fiandini, M. How to calculate and determine chemical kinetics: Step-by-step interpretation of experimental data to get reaction rate and order. Indonesian Journal of Science and Technology, 9(3), 759-774.

Farobie, O., Amrullah, A., Syaftika, N., Bayu, A., Hartulistiyoso, E., Fatriasari, W., and Nandiyanto, A. B. D. (2024). Valorization of rejected macroalgae Kappaphycopsis cottonii for bio-oil and bio-char production via slow pyrolysis. ACS Omega, 9(14), 16665-16675.

Farobie, O., Amrullah, A., Fatriasari, W., Nandiyanto, A. B. D., Ernawati, L., Karnjanakom, S., Lee, S. H., Selvasembian, R., Wan Azelee, N. I., and Aziz, M. (2024). Co-pyrolysis of plastic waste and macroalgae Ulva lactuca, a sustainable valorization approach towards the production of bio-oil and biochar. Results in Engineering, 24, 103098.

Nandiyanto, A. B. D., Sucianto, R. N., Matildha, S. R., Nur, F. Z., Kaniawati, I., Kurniawan, T., Bilad, M. R., and Che Sidik, N. A. (2025). What phenomena happen during pyrolysis of plastic? FTIR and GC-MS analysis of pyrolyzed low linear density polyethylene (LLDPE) polymer particles completed with bibliometric research trend and pyrolysis chemical reaction mechanism. Journal of Advanced Research in Applied Sciences and Engineering Technology, 46(1), 250-260.

Rahmat, A. (2021). Chemical properties of biochar from date palm seed (Phoenix dactylifera L.) under low temperature pyrolysis as soil amendment candidate. Applied Research in Science and Technology, 1(2), 116-120.

Rahmat, A., Ramadhani, W. S., Hidayat, H., Kurniawan, K., Hariadi, H., Nuraini, L., Iresha, F. M., Nurtanto, M., Nazarudin, N., and Nandiyanto, A. B. D. (2022). Sustainable compost prepared from oyster mushroom substrate microparticles with domestic wastes as local starters. Moroccan Journal of Chemistry, 10(4), 726-737.

Nandiyanto, A. B. D., Ragadhita, R., Girsang, G. C. S., Anggraeni, S., Putri, S. R., Sadiyyah, F. H., and Hibatulloh, M. R. (2022). Effect of palm fronds and rice husk composition ratio on the mechanical properties of composite-based brake pad. Moroccan Journal of Chemistry, 10(4), 663-677.

Rahmat, A., Ramadhani, W. S., Nur, M., Sutiharni, S., and Mutolib, A. (2022). Chemical properties of salacca seed biochar under low temperature of pyrolysis. Applied Research in Science and Technology, 2(1), 43-46.

Meziane, H., Laita, M., Azzaoui, K., Boulouiz, A., Neffa, M., Sabbahi, R., Nandiyanto, A. B. D., Elidrissi, A., Abidi, N., Siaj, M., and Touzani, R. (2024). Nanocellulose fibers: A review of preparation methods, characterization techniques, and reinforcement applications. Moroccan Journal of Chemistry, 12(1), 305-343.

Nandiyanto, A. B. D., Putri, A. R., Pratiwi, V. A., Ilhami, V. I. N., Kaniawati, I., Kurniawan, T., Farobie, O., and Bilad, M. R. (2024). Fourier transform infrared spectroscopy (FTIR) of pyrolysis of polypropylene microparticles and its chemical reaction mechanism completed with computational bibliometric literature review to support sustainable development goals (SDGs). Journal of Engineering Science and Technology, 19(3), 1090-1104.

Rahmat, A., Hidayat, H., Lestari, L. P., Elfarisna, E., Indriyani, I., Apriyanto, M., Nuraini, L., Hariadi, H., and Mutolib, A. (2024). Evaluation of the characteristics of avocado seed biochar at various pyrolysis temperatures for sustainable waste management. Universal Journal of Agricultural Research, 12(1), 201-210.

Rahmat, A., Awwaliyah, A. S., Hidayat, H., Budiharto, I. W., Arum, F., Respati, S. A., Susanti, W. D., and Sukamto, S. (2024). Effect of pyrolysis temperature on the properties of biochar derived from melinjo seed shells. International Journal of Heat and Technology, 42(6), 1924-1934.

Nandiyanto, A. B. D., Maryanti, R., Fiandini, M., Ragadhita, R., Usdiyana, D., Anggraeni, S., Arwa, W. R., and Al-Obaidi, A. S. M. (2020). Synthesis of carbon microparticles from red dragon fruit (Hylocereus undatus) peel waste and their adsorption isotherm characteristics. Molekul, 15(3), 199-209.

N’diaye, A. D., Kankou, M. S., Hammouti, B., Nandiyanto, A. B. D., and Al Husaeni, D. F. (2022). A review of biomaterial as an adsorbent: From the bibliometric literature review, the definition of dyes and adsorbent, the adsorption phenomena and isotherm models, factors affecting the adsorption process, to the use of Typha species waste as a low-cost adsorbent. Communications in Science and Technology, 7(2), 140-153.

Nandiyanto, A. B., Azizah, N. N., and Taufik, R. S. R. (2022). Investigation of adsorption performance of calcium carbonate microparticles prepared from eggshells waste. Journal of Engineering Science and Technology, 17(3), 1934-1943.

Ragadhita, R., Amalliya, A., Nuryandi, S., Fiandini, M., Nandiyanto, A. B. D., Hufad, A., Mudzakir, A., Nugraha, W. C., Farobie, O., Istadi, I., and Al-Obaidi, A. S. M. (2023). Sustainable carbon-based biosorbent particles from papaya seed waste: Preparation and adsorption isotherm. Moroccan Journal of Chemistry, 11(2), 395-410.

Ramdhani, M. R., Kholik, A., Fauziah, R. S. P., Roestamy, M., Suherman, I., and Nandiyanto, A. B. D. (2023). A comprehensive study on biochar production, bibliometric analysis, and collaborative teaching practicum for sustainable development goals (SDGs) in Islamic schools. Jurnal Pendidikan Islam, 9(2), 123-144.

Nandiyanto, A. B. D., Fiandini, M., Ragadhita, R., Maryanti, R., Husaeni, D. F. A., and Husaeni, D. N. (2023). Removal of curcumin dyes from aqueous solutions using carbon microparticles from jackfruit seeds by batch adsorption experiment. Journal of Engineering Science and Technology, 18(1), 653-670.

Nandiyanto, A. B. D., Ragadhita, R., Fiandini, M., Maryanti, R., Husaeni, D. N. A., and Husaeni, D. F. A. (2023). Adsorption isotherm characteristics of calcium carbon microparticles prepared from chicken bone waste to support sustainable development goals (SDGs). Journal of Engineering Science and Technology, 18(2), 1363-1379.

Nandiyanto, A. B. D., Fiandini, M., Fadiah, D. A., Muktakin, P. A., Ragadhita, R., Nugraha, W. C., Kurniawan, T., Bilad, M. R., Yunas, J., and Al Obaidi, A. S. M. (2023). Sustainable biochar carbon microparticles based on mangosteen peel as biosorbent for dye removal: Theoretical review, modelling, and adsorption isotherm characteristics. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 105(1), 41-58.

Nandiyanto, A. B. D., Nugraha, W. C., Yustia, I., Ragadhita, R., Fiandini, M., Saleh, M., and Ningwulan, D. R. (2023). Rice husk for adsorbing dyes in wastewater: Literature review of agricultural waste adsorbent, preparation of rice husk particles, particle size on adsorption characteristics with mechanism and adsorption isotherm. Journal of Advanced Research in Applied Mechanics, 106(1), 1-13.

Nandiyanto, A. B. D., Fiandini, M., Ragadhita, R., Maulani, H., Nurbaiti, M., Al-Obaidi, A. S. M., Yunas, J., and Bilad, M. R. (2023). Sustainable biochar carbon biosorbent based on tamarind (Tamarindus indica L.) seed: Literature review, preparation, and adsorption isotherm. Journal of Advanced Research in Applied Sciences and Engineering Technology, 32(1), 210-226.

Nandiyanto, A. B. D., Fiandini, M., Ragadhita, R., and Aziz, M. (2023). How to purify and experiment with dye adsorption using carbon: Step-by-step procedure from carbon conversion from agricultural biomass to concentration measurement using UV-Vis spectroscopy. Indonesian Journal of Science and Technology, 8(3), 363-380.

Nandiyanto, A. B. D., Nugraha, W. C., Yustia, I., Ragadhita, R., Fiandini, M., Meirinawati, H., and Wulan, D. R. (2024). Isotherm and kinetic adsorption of rice husk particles as a model adsorbent for solving issues in the sustainable gold mining environment from mercury leaching. Journal of Mining Institute, 265, 104-120.

Nandiyanto, A. B. D., Putri, M. E., Fiandini, M., Ragadhita, R., Kurniawan, T., Farobie, O., and Bilad, M. R. (2024). Characteristics of ammonia adsorption on various sizes of calcium carbonate microparticles from chicken eggshell waste. Moroccan Journal of Chemistry, 12(3), 1073-1096.

Nandiyanto, A. B. D., Fiandini, M., and Al Husaeni, D. N. (2024). Research trends from the Scopus database using keyword water hyacinth and ecosystem: A bibliometric literature review. ASEAN Journal of Science and Engineering, 4(1), 33-48.

Nandiyanto, A. B. D., Ragadhita, R., Hofifah, S. N., Al Husaeni, D. F., Al Husaeni, D. N., Fiandini, M., Luckiardi, S., Soegoto, E. S., Darmawan, A., and Aziz, M. (2024). Progress in the utilization of water hyacinth as effective biomass material. Environment, Development and Sustainability, 26, 24521-24568.

Mubarokah, S. L., Anwar, S., Nisa, K., Miftah, H., Hastuti, A., and Nandiyanto, A. B. D. (2024). Bibliometrics study on agro-economy of biochar. Journal of Engineering Science and Technology, 19, 142-152.

Martin, A. Y., Roestamy, M., Qolyubi, A. T., Hakim, A. L., and Nandiyanto, A. B. D. (2024). Bibliometric analysis of the use of biochar in an environmental law perspective. Journal of Engineering Science and Technology, 19, 167-176.

Nandiyanto, A. B. D., Putri, A. E., Fiandini, M., Ragadhita, R., and Kurniawan, T. (2025). Biochar microparticles from pomegranate peel waste: Literature review and experiments in isotherm adsorption of ammonia. Applied Science and Engineering Progress, 18(1), 7506.

Nandiyanto, A. B. D., Putri, N. R., Salimah, N. N., Al’ Hafsah, S. H., Yunatraya, S. A., Fiandini, M., Bilad, M. R., Kurniawan, T., Gandidi, I. M., and Sukrawan, Y. (2025). Utilizing cassava peel-derived carbon biochar for ammonia adsorption to support hydrogen storage and sustainable development goals (SDGs): Effect of microparticle size and isothermal analysis. Moroccan Journal of Chemistry, 13(1), 424-439.

Nandiyanto, A. B. D., Putri, N. R., Firdaus, N. N., Anzety, N. D., Al’Hafsah, S. H., Yunatraya, S. A., Fiandini, M., Bilad, M. R., Kurniawan, T., Gandidi, I. M., and Sukrawan, Y. (2025). Red onion peel biomass carbon microparticles for ammonia adsorption for supporting hydrogen storage and sustainable development goals (SDGs) with isotherm analysis. Journal of Engineering Science and Technology, 20(1), 181-194.

Nandiyanto, A. B., Nugraha, A. Y., Fawwaz, L. T., Pramajati, M. F., Wijaya, Y. T., Fiandini, M., Bilad, M. R., Kurniawan, T., Gandidi, I. M., and Sukrawan, Y. (2025). Utilization of orange peel-derived biochar for ammonia adsorption: Isotherm analysis and hydrogen storage prospective for supporting sustainable development goals (SDGs). Journal of Engineering Science and Technology, 20(1), 85-98.

Nandiyanto, A. B. D. (2020). Isotherm adsorption of carbon microparticles prepared from pumpkin (Cucurbita maxima) seeds using two-parameter monolayer adsorption models and equations. Moroccan Journal of Chemistry, 8(3), 745-761.

Nayaggy, M., and Putra, Z. A. (2019). Process simulation on fast pyrolysis of palm kernel shell for production of fuel. Indonesian Journal of Science and Technology, 4(1), 64-73.

Subagyono, R. D. J., Qi, Y., Chaffee, A. L., Amirta, R., and Marshall, M. (2021). Pyrolysis-GC/MS analysis of fast growing wood Macaranga species. Indonesian Journal of Science and Technology, 6(1), 141-158.

Jamilatun, S., Pitoyo, J., Amelia, S., Ma’arif, A., Hakika, D. C., and Mufandi, I. (2022). Experimental study on the characterization of pyrolysis products from bagasse (Saccharum officinarum L.): Bio-oil, biochar, and gas products. Indonesian Journal of Science and Technology, 7(3), 565-582.

Jelita, R., Nata, I. F., Irawan, C., Jefriadi, J., Anisa, M. N., Mahdi, M. J., and Putra, M. D. (2023). Potential alternative energy of hybrid coal from co-pyrolysis of lignite with palm empty fruit bunch and the kinetic study. Indonesian Journal of Science and Technology, 8(1), 97-112.

Mutolib, A., Rahmat, A., Triwisesa, E., Hidayat, H., Hariadi, H., Kurniawan, K., Sutiharni, S., and Sukamto, S. (2023). Biochar from agricultural waste for soil amendment candidate under different pyrolysis temperatures. Indonesian Journal of Science and Technology, 8(2), 243-258.

Jamilatun, S., Aziz, M., and Pitoyo, J. (2023). Multi-distributed activation energy model for pyrolysis of sugarcane bagasse: Modelling strategy and thermodynamic characterization. Indonesian Journal of Science and Technology, 8(3), 413-428.

Rahmat, A., Sutiharni, S., Elfina, Y., Yusnaini, Y., Latuponu, H., Minah, F. N., Sulistyowati, Y., and Mutolib, A. (2023). Characteristics of tamarind seed biochar at different pyrolysis temperatures as waste management strategy: Experiments and bibliometric analysis. Indonesian Journal of Science and Technology, 8(3), 517-538.

Sridevi, V., Hamzah, H. T., Jweeg, M. J., Mohammed, M. N., Al-Zahiwat, M. M., Abdullah, T. A., and Abdullah, O. I. (2024). Microwave pyrolysis of agricultural and plastic wastes for production of hybrid biochar: Applications for greener environment. Indonesian Journal of Science and Technology, 9(3), 791-820.

Pebrianti, M., and Salamah, F. (2021). Learning simple pyrolysis tools for turning plastic waste into fuel. Indonesian Journal of Multidisciplinary Research, 1(1), 99-102.

Alhinai, M., Azad, A. K., Bakar, M. A., and Phusunti, N. (2018). Characterization and thermochemical conversion of rice husk for biochar production. International Journal of Renewable Energy Research, 8(3), 1648-1656.

Tsai, W. T., Lee, M. K., and Chang, Y. M. (2007). Fast pyrolysis of rice husk: Product yields and compositions. Bioresource Technology, 98(1), 22-28.

Prapagdee, S., Piyatiratitivorakul, S., and Petsom, A. (2016). Physico-chemical activation on rice husk biochar for enhancing cadmium removal from aqueous solution. Asian Journal of Water, Environment and Pollution, 13(1), 27-34.

Antonangelo, J. A., Zhang, H., Sun, X., and Kumar, A. (2019). Physicochemical properties and morphology of biochars as affected by feedstock sources and pyrolysis temperatures. Biochar, 1, 325-336.

Reza, M. S., Afroze, S., Bakar, M. S. A., Saidur, R., Aslfattahi, N., Taweekun, J., and Azad, A. K. (2020a). Biochar characterization of invasive Pennisetum purpureum grass: Effect of pyrolysis temperature. Biochar, 2, 239-251.

Claoston, N., Samsuri, A. W., Husni, M. H. A., and Amran, M. S. M. (2014). Effects of pyrolysis temperature on the physicochemical properties of empty fruit bunch and rice husk biochars. Waste Management and Research, 32(4), 331-339.

Cha, J. S., Park, S. H., Jung, S.-C., Ryu, C., Jeon, J.-K., Shin, M.-C., and Park, Y.-K. (2016). Production and utilization of biochar: A review. Journal of Industrial and Engineering Chemistry, 40, 1-15.

Angın, D. (2013). Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake. Bioresource Technology, 128, 593-597.

Ronsse, F., Van Hecke, S., Dickinson, D., and Prins, W. (2012). Production and characterization of slow pyrolysis biochar: Influence of feedstock type and pyrolysis conditions. Global Change Biology Bioenergy, 5(2), 104-115.

Ragadhita, R., and Nandiyanto, A. B. D. (2022). Why 200°C is effective for creating carbon from organic waste (from thermal gravity (TG-DTA) perspective)?. ASEAN Journal for Science and Engineering in Materials, 2(2), 75-80.

Nandiyanto, A. B. D. (2017). Mathematical approximation based on thermal analysis curves for calculating kinetic parameters of thermal decomposition of material. Journal of Engineering Science and Technology, 12(5), 76-90.

Yahya, M. A., Al-Qodah, Z., and Ngah, C. Z. (2015). Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review. Renewable and Sustainable Energy Reviews, 46, 218-235.

Chen, B., Zhou, D., and Zhu, L. (2008). Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environmental Science and Technology, 42(14), 5137-5143.

Yuan, J. H., Xu, R. K., and Zhang, H. (2011b). The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technology, 102(3), 3488-3497.

Demirbas, A. (2004). Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. Journal of Analytical and Applied Pyrolysis, 72(2), 243-248.

Keiluweit, M., Nico, P. S., Johnson, M. G., and Kleber, M. (2010). Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environmental Science and Technology, 44(4), 1247-1253.

Irwansyah, F. S., Amal, A. I., Diyanthi, E. W., Hadisantoso, E. P., Noviyanti, A. R., Eddy, D. R., and Risdiana, R. (2024). How to read and determine the specific surface area of inorganic materials using the Brunauer-Emmett-Teller (BET) method. ASEAN Journal of Science and Engineering, 4(1), 61-70.

Ahmad, M., Lee, S. S., Dou, X., Mohan, D., Sung, J. K., Yang, J. E., and Ok, Y. S. (2012). Effects of pyrolysis temperature on soybean stover and peanut shell-derived biochar properties and TCE adsorption in water. Bioresource Technology, 118, 536-544.

Shaaban, A., Se, S. M., Dimin, M. F., Juoi, J. M., Husin, M. H., and Mitan, N. M. M. (2014). Influence of heating temperature and holding time on biochars derived from rubber wood sawdust via slow pyrolysis. Journal of Analytical and Applied Pyrolysis, 107, 31-39.

Kavitha, B., Reddy, P. V. L., Kim, B., Lee, S. S., Pandey, S. K., and Kim, K. H. (2018). Benefits and limitations of biochar amendment in agricultural soils: A review. Journal of Environmental Management, 227, 146-154.

Tan, I., Ahmad, A., and Hameed, B. (2008). Preparation of activated carbon from coconut husk: Optimization study on removal of 2,4,6-trichlorophenol using response surface methodology. Journal of Hazardous Materials, 153(1-2), 709-717.

Wang, T., Liu, H., Duan, C., Xu, R., Zhang, Z., She, D., and Zheng, J. (2020). The eco-friendly biochar and valuable bio-oil from Caragana korshinskii: Pyrolysis preparation, characterization, and adsorption applications. Materials, 13(15), 1-20.

Jiang, Y., Li, C., Zhang, L., Fan, M., Zhang, S., Gao, W., Li, B., Wang, S., and Hu, X. (2023). Pyrolysis of banana peel with microwave and furnace as the heating sources: The distinct impacts on evolution of the pyrolytic products. Process Safety and Environmental Protection, 173, 373-383.

Jalalabadi, T., Wu, J., Moghtaderi, B., Sharma, N., and Allen, J. (2023). A new approach to turbostratic carbon production via thermal salt-assisted treatment of graphite. Fuel, 348, 128489.

Pusceddu, E., Montanaro, A., Fioravanti, G., Santilli, S. F., Foscolo, P. U., Criscuoli, I., Raschi, A., and Miglietta, F. (2017). Comparison between ancient and fresh biochar samples: A study on the recalcitrance of carbonaceous structures during soil incubation. International Journal of New Technology and Research, 3(3), 39-46.

Han, Y., Gholizadeh, M., Tran, C. C., Kaliaguine, S., Li, C. Z., Olarte, M., and Garcia-Perez, M. (2019). Hydrotreatment of pyrolysis bio-oil: A review. Fuel Processing Technology, 195, 106140.

Paris, O., Loidl, D., Peterlik, H., Müller, M., Lichtenegger, H., and Fratzl, P. (2000). The internal structure of single carbon fibers determined by simultaneous small- and wide-angle X-ray scattering. Journal of Applied Crystallography, 33(3), 695-699.

Nadarajah, K., Asharp, T., and Jeganathan, Y. (2024). Biochar from waste biomass, its fundamentals, engineering aspects, and potential applications: an overview. Water Science and Technology, 89(5), 1211-1239.

Tomczyk, A., Sokołowska, Z., and Boguta, P. (2020). Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Biotechnology, 19(1), 191-215.

Nandiyanto, A. B. D., Oktiani, R., and Ragadhita, R. (2019). How to read and interpret FTIR spectroscope of organic material. Indonesian Journal of Science and Technology, 4(1), 97-118.

Nandiyanto, A. B. D., Ragadhita, R., and Fiandini, M. (2023). Interpretation of Fourier Transform Infrared Spectra (FTIR): A practical approach in the polymer/plastic thermal decomposition. Indonesian Journal of Science and Technology, 8(1), 113-126.

Sukamto, S., and Rahmat, A. (2023). Evaluation of FTIR, macro and micronutrients of compost from black soldier fly residual: In context of its use as fertilizer. ASEAN Journal of Science and Engineering, 3(1), 21-30.

Obinna, E. N. (2022). Physicochemical properties of human hair using Fourier Transform Infra-Red (FTIR) and Scanning Electron Microscope (SEM). ASEAN Journal for Science and Engineering in Materials, 1(2), 71-74.

Chi, M., Xu, X., Cui, D., Zhang, H., and Wang, Q. (2016). A TG-FTIR investigation and kinetic analysis of oil shale kerogen pyrolysis using the distributed activation energy model. Oil Shale, 33(3), 228-247.

Tahir, M. H., Zhao, Z., Ren, J., Rasool, T., and Naqvi, S. R. (2019). Thermo-kinetics and gaseous product analysis of banana peel pyrolysis for its bioenergy potential. Biomass and Bioenergy, 122, 193-201.

Fildza, M., Rohmatullaili, R., and Oktasari, A. (2022). Utilization of Jengkol Peel (Pithecellobium jiringa) as an adsorbent of iron metal. Walisongo Journal of Chemistry, 5(2), 130-135.

Gonçalves Martins, J. P., Setter, C., Ataíde, C. H., Pires de Oliveira, T. J., and Magriotis, Z. M. (2021). Study of pequi peel pyrolysis: Thermal decomposition analysis and product characterization. Biomass and Bioenergy, 149, 106095.

Abidi, S., Trabelsi, A. B. H., and Boudhrioua, N. (2023). Pyrolysis of lemon peel waste in a fixed-bed reactor and characterization of innovative pyrolytic products. Journal of Material Cycles and Waste Management, 25(1), 235-248.

Park, J., Hung, I., Gan, Z., Rojas, O. J., Lim, K. H., and Park, S. (2013). Activated carbon from biochar: Influence of its physicochemical properties on the sorption characteristics of phenanthrene. Bioresource Technology, 149, 383-389.

Iskandar, T., and Rofiatin, U. (2017). Karakteristik biochar berdasarkan jenis biomassa dan parameter proses pirolisis. Jurnal Teknik Kimia, 12(1), 28-35.

Puspita, V., Syakur, S., and Darusman, D. (2021). Karakteristik biochar sekam padi pada dua temperatur pirolisis. Jurnal Ilmiah Mahasiswa Pertanian, 6(4), 732-739.

Pratiwi, D., Syakur, S., and Darusman, D. (2021). Karakteristik biochar pada beberapa metode pembuatan dan bahan baku. Jurnal Ilmiah Mahasiswa Pertanian, 6(3), 210-216.

Enders, A., Hanley, K., Whitman, T., Joseph, S., and Lehmann, J. (2012). Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresource Technology, 114, 644-653.

Uchimiya, M., Wartelle, L. H., Klasson, K. T., Fortier, C. A., and Lima, I. M. (2011). Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil. Journal of Agricultural and Food Chemistry, 59(6), 2501-2510.

Soedarmanto, H., Setiawaty, E., and Iskandar, T. (2021). Optimasi kadar ultimate dan tingkat kebasaan bio-arang limbah kayu durian sebagai pembenah tanah. Jurnal Selulosa, 11(2), 59-68.

Cantrell, K. B., Hunt, P. G., Uchimiya, M., Novak, J. M., and Ro, K. S. (2012). Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresource Technology, 107, 419-428.

Al Falaq, F., Juanda, B. R., and Siregar, D. S. (2020). Respon pertumbuhan dan hasil tanaman terung (Solanum melongena L.) terhadap dosis pupuk organik cair GDM dan pupuk organik padat. Jurnal Agrosamudra, 7(2), 1-13.

Lisdiyanti, M., and Guchi, H. (2018). Pengaruh pemberian bahan humat dan pupuk SP-36 untuk meningkatkan ketersediaan fosfor pada tanah ultisol. Jurnal Pertanian Tropik, 5(2), 192-198.

Widowati, W., Asnah, A., and Sutoyo, S. (2012). Pengaruh penggunaan biochar dan pupuk kalium terhadap pencucian dan serapan kalium pada tanaman jagung. Buana Sains, 12(1), 83-90.

Al Mu'min, M. I., Joy, B., and Yuniarti, A. (2016). Dinamika kalium tanah dan hasil padi sawah (Oryza sativa L.) akibat pemberian NPK majemuk dan penggenangan pada Fluvaquentic Epiaquepts. Soilrens, 14(1), 11-15.

Gunes, A., Inal, A., Sahin, O., Taskin, M. B., Atakol, O., and Yilmaz, N. (2015). Variations in mineral element concentrations of poultry manure biochar obtained at different pyrolysis temperatures, and their effects on crop growth and mineral nutrition. Soil Use and Management, 31(4), 429-437.

Aryandhita, M. I., and Kastono, D. (2021). Pengaruh pupuk kalsium dan kalium terhadap pertumbuhan dan kualitas hasil sawi hijau (Brassica rapa L.). Vegetalika, 10(2), 107-119.

Rosmiah, R., Aminah, R. I. S., Astuti, D. T., Marlina, N., Meidalima, D., and Pratama, B. (2023). Utilization of jengkol (Pithecellobium jiringa) peel biochar and chicken manure as organic fertilizer on red chili plants (Capsicum annum L.) in acidic dry land. Jurnal Lahan Suboptimal: Journal of Suboptimal Lands, 12(2), 129-138.

Chettri, D., Boro, D., Chirania, M., and Verma, A. K. (2024). Integrating biochar production in biorefineries: Towards a sustainable future and circular economy. Biofuels, Bioproducts and Biorefining, 18(6), 2156-2176.

Prochnow, F. D., Cavali, M., Dresch, A. P., Belli, I. M., Libardi, N. J., and de Castilhos, A. B. J. (2024). Biochar: From laboratory to industry scale—An overview of scientific and industrial advances, opportunities in the Brazilian context, and contributions to sustainable development. Processes, 12, 1006.




DOI: https://doi.org/10.17509/ajse.v5i1.81297

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Universitas Pendidikan Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

ASEAN Journal of Science and Engineering (AJSE) is published by UPI 

View My Stats