Current Strategies for Mitigating Airborne Pathogen Transmission: An Integrative Review Based on Aerosol Science and Particle Technology to Support the Sustainable Development Goals (SDGs), Complemented by a Bibliometric Analysis

Risti Ragadhita, Meli Fiandini, Asep Bayu Dani Nandiyanto, Eka Lutfi Septiani, Takashi Ogi, Kikuo Okuyama

Abstract


Airborne pathogen transmission remains a significant global health challenge, particularly in densely populated and poorly ventilated environments. This integrative review explores current strategies for mitigating airborne transmission through the lens of aerosol science and particle technology. Using a structured literature review approach, the study examines the behavior of viruses, bacteria, and fungi in aerosols, highlighting critical environmental factors such as droplet size, humidity, temperature, and airflow. Advanced detection techniques and air purification technologies (including HEPA filters, UVGI, photocatalysis, and electrostatic precipitation) are analyzed for their efficacy and practical limitations. A bibliometric analysis reveals a post-pandemic surge in research, with dominant themes including ventilation systems and COVID-19 mitigation. The review emphasizes the alignment of mitigation strategies with the United Nations Sustainable Development Goals (SDGs), particularly SDGs 3, 9, 11, and 13. It concludes by advocating for interdisciplinary, policy-driven, and AI-enhanced approaches to improve indoor air quality and reduce the risk of airborne infectious diseases.


Keywords


Airborne pathogen; Air purification technology; Infection control; Real-time detection; Transmission

Full Text:

PDF

References


De Gaetano, S., Ponzo, E., Midiri, A., Mancuso, G., Filippone, D., Infortuna, G., and Biondo, C. (2025). Global trends and action items for the prevention and control of emerging and re-emerging infectious diseases. Hygiene, 5(2), 18.

Aghayan, S.K. (2025). Moghadas hosseinzadeh F. The impact of traveling on infectious diseases transmission with a focus on air travel: A Narrative Review. International Journal Travel Media Global Health, 13(1), 33-41.

Wang, C.C., Prather, K.A., Sznitman, J., Jimenez, J.L., Lakdawala, S.S., Tufekci, Z., and Marr, L.C. (2021). Airborne transmission of respiratory viruses. Science, 373(6558), eabd9149.

Friedlander, S.K., and Pui, D.Y. (2004). Emerging issues in nanoparticle aerosol science and technology. Journal of Nanoparticle Research, 6(2), 313-320.

Khlystov, A., Stanier, C., and Pandis, S.N. (2004). An algorithm for combining electrical mobility and aerodynamic size distributions data when measuring ambient aerosol special issue of aerosol science and technology on findings from the fine particulate matter supersites program. Aerosol Science and Technology, 38(S1), 229-238.

Tang, J.W. (2009). The effect of environmental parameters on the survival of airborne infectious agents. Journal of the Royal Society Interface, 6(suppl_6), S737-S746.

Liu, F., Ma, Q., Marjub, M.M., Suthammanont, A. K., Sun, S., Yao, H., and Zhang, W. (2023). Reactive air disinfection technologies: Principles and applications in bioaerosol removal. ACS ES&T Engineering, 3(5), 602-615.

Qiu, G., Zhang, X., deMello, A. J., Yao, M., Cao, J., and Wang, J. (2023). On-site airborne pathogen detection for infection risk mitigation. Chemical Society Reviews, 52(24), 8531-8579.

Olatunji, A.O., Olaboye, J.A., Maha, C.C., Kolawole, T.O., and Abdul, S. (2024). Environmental microbiology and public health: Advanced strategies for mitigating waterborne and airborne pathogens to prevent disease. International Medical Science Research Journal, 4(7), 756-770.

Nair, A. N., Anand, P., George, A., and Mondal, N. (2022). A review of strategies and their effectiveness in reducing indoor airborne transmission and improving indoor air quality. Environmental Research, 213, 113579.

Saeedi, R., Ahmadi, E., Hassanvand, M.S., Mohasel, M.A., Yousefzadeh, S., and Safari, M. (2023). Implemented indoor airborne transmission mitigation strategies during COVID-19: a systematic review. Journal of Environmental Health Science and Engineering, 21(1), 11-20.

Tsang, T.W., Wong, L.T., and Mui, K. W. (2024). Experimental studies on airborne transmission in hospitals: A systematic review. Indoor and Built Environment, 33(4), 608-640.

Salman, A., Sattineni, A., Azhar, S., and Leousis, K. (2022). A systematic review of building systems and technologies to mitigate the spread of airborne viruses. Journal of Facilities Management, 20(3), 369-384.

Bertran, K., Clark, A., and Swayne, D. E. (2018). Mitigation strategies to reduce the generation and transmission of airborne highly pathogenic avian influenza virus particles during processing of infected poultry. International Journal of Hygiene and Environmental Health, 221(6), 893-900.

Klompas, M., Milton, D. K., Rhee, C., Baker, M. A., and Leekha, S. (2021). Current insights into respiratory virus transmission and potential implications for infection control programs: a narrative review. Annals of Internal Medicine, 174(12), 1710-1718.

Salman, A., Sattineni, A., Azhar, S., and Leousis, K. (2022). A systematic review of building systems and technologies to mitigate the spread of airborne viruses. Journal of Facilities Management, 20(3), 369-384.

Aliabadi, A.A., Rogak, S.N., Bartlett, K.H., and Green, S.I. (2011). Preventing airborne disease transmission: Review of methods for ventilation design in health care facilities. Advances in Preventive Medicine, 2011(1), 124064.

Li, Y., Leung, M., Tang, J.W., Yang, X., Chao, C.Y.H., Lin, J.Z., and Yuen, P.L. (2007). Role of ventilation in airborne transmission of infectious agents in the built environment–a multidisciplinary systematic review. Indoor Air, 17(1), 2-18.

Delikhoon, M., Guzman, M.I., Nabizadeh, R., and Norouzian Baghani, A. (2021). Modes of transmission of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) and factors influencing on the airborne transmission: A review. International Journal of Environmental Research and Public Health, 18(2), 395.

Janczarek, M., Ślosarczyk, A., Klapiszewska, I., Riha, J., Jesionowski, T., and Klapiszewski, Ł. (2024). Airborne bioaerosols in healthcare facilities–transmission routes and mitigation strategies. A review. Journal of Building Engineering, 111015.

Acharya B., Acharya A., Gautam S., Ghimire S.P., Mishra G., Parajuli N., and Sapkota B. (2020). Advances in the diagnosis of Tuberculosis: An update into molecular diagnosis of Mycobacterium tuberculosis. Molecular Biology Reports, 47, 4065-4075.

Kim S.M., Kim J., Noh S., Sohn H., and Lee T. (2020). Recent development of aptasensor for influenza virus detection. BioChip Journal, 14, 327-339.

Lee J.I., Jang S.C., Chung J., Choi W.-K., Hong C., Ahn G.R., Kim S.H., Lee B.Y., and Chung W.-J. (2021). Colorimetric allergenic fungal spore detection using peptide-modified gold nanoparticles. Sensors and Actuators B: Chemical, 327, 128894.

Randall, K., Ewing, E. T., Marr, L. C., Jimenez, J. L., and Bourouiba, L. (2021). How did we get here: what are droplets and aerosols and how far do they go? A historical perspective on the transmission of respiratory infectious diseases. Interface Focus, 11(6), 20210049.

Delikhoon, M., Guzman, M. I., Nabizadeh, R., and Norouzian Baghani, A. (2021). Modes of transmission of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) and factors influencing on the airborne transmission: A review. International journal of Environmental Research and Public Health, 18(2), 395.

Wolkoff, P., Azuma, K., and Carrer, P. (2021). Health, work performance, and risk of infection in office-like environments: The role of indoor temperature, air humidity, and ventilation. International Journal of Hygiene and Environmental Health, 233, 113709.

Zhao, X., Liu, S., Yin, Y., Zhang, T., and Chen, Q. (2022). Airborne transmission of COVID‐19 virus in enclosed spaces: an overview of research methods. Indoor Air, 32(6), e13056.

Jonges, M., Van Leuken, J., Wouters, I., Koch, G., Meijer, A., and Koopmans, M. (2015). Wind-mediated spread of low-pathogenic avian influenza virus into the environment during outbreaks at commercial poultry farms. PloS One, 10(5), e0125401.

Coşkun, H., Yıldırım, N., and Gündüz, S. (2021). The spread of COVID-19 virus through population density and wind in Turkey cities. Science of the Total Environment, 751, 141663.

Yang, X., Yang, H., Ou, C., Luo, Z., and Hang, J. (2021). Airborne transmission of pathogen-laden expiratory droplets in open outdoor space. Science of The Total Environment, 773, 145537.

Kim S.M., Kim J., Noh S., Sohn H., and Lee T. (2020). Recent development of aptasensor for influenza virus detection. BioChip Journal, 14, 327-339.

Rowe B. (1979). The role of Escherichia coli in gastroenteritis. Clinics in Gastroenterology, 8(3), 625-644.

Mouratidis P.X., and Ter Haar G. (2022). Latest advances in the use of therapeutic focused ultrasound in the treatment of pancreatic cancer. Cancers, 14(3), 638.

Al-Abri, S. S., Al-Jardani, A. K., Al-Hosni, M. S., Kurup, P. J., Al-Busaidi, S., and Beeching, N. J. (2011). A hospital acquired outbreak of Bacillus cereus gastroenteritis, Oman. Journal of Infection and Public Health, 4(4), 180-186.

Song, H., Sandie, R., Wang, Y., Andrade-Navarro, M.A., and Niederweis, M. (2008). Identification of outer membrane proteins of Mycobacterium tuberculosis. Tuberculosis, 88(6), 526-544.

Aziz S.A.A.A., Mahmoud R., and Mohamed M.B.E.D. (2022). Control of biofilm-producing Pseudomonas aeruginosa isolated from dairy farm using Virokill silver nano-based disinfectant as an alternative approach. Scientific Reports, 12(1), 9452.

Kostic A., Cukovic K., Stankovic L., Raskovic Z., Nestorovic J., Savic D., Simovic A., Prodanovic T., Zivojinovic S., and Andrejevic S. (2022). The different clinical courses of legionnaires’ disease in newborns from the same maternity hospital. Medicina, 58(9), 1150.

Yoshida, M., Furuya, N., Hosokawa, N., Kanamori, H., Kaku, M., Koide, M., and Fujita, J. (2018). Legionella pneumophila contamination of hospital dishwashers. American Journal of Infection Control, 46(8), 943-945.

Hussain H.H., Ibraheem N.T., Al-Rubaey N.K.F., Radhi M.M., Hindi N.K.K., and AL-Jubori R.H.K. (2022). A review of airborne contaminated microorganisms associated with human diseases. Medical Journal of Babylon, 19(2), 115-122.

Banerjee K., Chatterjee M., Sandur R., Nachimuthu R., Madhyastha H., and Thiagarajan P. (2021). Azadirachta indica A. Juss (Neem) oil topical formulation with liquid crystals ensconcing depot water for anti-inflammatory, wound healing and anti-methicillin resistant Staphylococcus aureus activities. Journal of Drug Delivery Science and Technology, 64, 102563.

Navarro P. P., Vettiger A., Ananda V. Y., Llopis P. M., Allolio C., Bernhardt T. G., and Chao L. H. (2022). Cell wall synthesis and remodelling dynamics determine division site architecture and cell shape in Escherichia coli. Nature Microbiology, 7(10), 1621-1634.

Chruściel J.J. (2022). Modifications of textile materials with functional silanes, liquid silicone softeners, and silicone rubbers—A Review. Polymers, 14(20), 4382.

Deb C., Lee C.M., Dubey V.S., Daniel J., Abomoelak B., Sirakova T.D., Pawar S., Rogers L., and Kolattukudy P.E. (2009). A novel in vitro multiple-stress dormancy model for Mycobacterium tuberculosis generates a lipid-loaded, drug-tolerant, dormant pathogen, PloS one, 4(6), e6077.

Song, L., Zhou, J., Wang, C., Meng, G., Li, Y., Jarin, M., Wu, Z., and Xie, X. (2022). Airborne pathogenic microorganisms and air cleaning technology development: A review. Journal of Hazardous Materials, 424, 127429.

Jasim, S.A., Mohammadi, M.J., Patra, I., Jalil, A.T., Taherian, M., Abdullaeva, U.Y., and Alborzi, M. (2024). The effect of microorganisms (bacteria and fungi) in dust storm on human health. Reviews on Environmental Health, 39(1), 65-75.

Guo W., Zhao M., Chen Q., Huang L., Mao Y., Xia N., Teng J., and Wei B. (2019). Citrinin produced using strains of Penicillium citrinum from Liupao tea. Food Bioscience, 28, 183-191.

La Rosa G., Fratini M., Libera S.D., Iaconelli M., and Muscillo M. (2013). Viral infections acquired indoors through airborne, droplet or contact transmission. Annali dell'Istituto Superiore di Sanita, 49, 124-132.

Li Y. (2021). Basic routes of transmission of respiratory pathogens—A new proposal for transmission categorization based on respiratory spray, inhalation, and touch. Indoor Air, 31(1), 3.

Habibi-Yangjeh A., Asadzadeh-Khaneghah S., Feizpoor S., and Rouhi A. (2020). Review on heterogeneous photocatalytic disinfection of waterborne, airborne, and foodborne viruses: can we win against pathogenic viruses?. Journal of Colloid and Interface Science, 580, 503-514.

Okoro O.J., Deme G.G., Okoye C.O., Eze S.C., Odii E.C., Gbadegesin J.T., Okeke E.S., Oyejobi G.K., Nyaruaba R., and Ebido C.C. (2023). Understanding key vectors and vector-borne diseases associated with freshwater ecosystem across Africa: Implications for public health. Science of the Total Environment, 862, 160732.

Bardosh, K.L., Ryan, S.J., Ebi, K., Welburn, S., and Singer, B. (2017). Addressing vulnerability, building resilience: community-based adaptation to vector-borne diseases in the context of global change. Infectious Diseases of Poverty, 6, 1-21.

Rani Z., Abbas A., Saeed Z., Zaheer H., and Abbas R. (2023). Strategies and advancements for control of vector borne diseases of public health concern. One Health Triad, Unique Scientific Publishers, Faisalabad, Pakistan, 1, 168-174.

Wang C.C., Prather K.A., Sznitman J., Jimenez J.L., Lakdawala S.S., Tufekci Z., and Marr L.C. (2021). Airborne transmission of respiratory viruses. Science, 373(6558), eabd9149.

Edwards D.A., Ausiello D., Salzman J., Devlin T., Langer R., Beddingfield B.J., Fears A.C., Doyle-Meyers L.A., Redmann R.K., and Killeen S.Z. (2021). Exhaled aerosol increases with COVID-19 infection, age, and obesity. Proceedings of the National Academy of Sciences, 118(8), e2021830118.

Riediker M., and Morawska L. (2020). Low exhaled breath droplet formation may explain why children are poor SARS-CoV-2 transmitters. Aerosol and Air Quality Research, 20(7), 1513-1515.

Lin K., and Marr L.C. (2019). Humidity-dependent decay of viruses, but not bacteria, in aerosols and droplets follows disinfection kinetics. Environmental Science & Technology, 54(2), 1024-1032.

Yang W., and Marr L.C. (2011). Dynamics of airborne influenza A viruses indoors and dependence on humidity, PloS one, 6(6), e21481.

Rasheed, A., Sharma, S., Kabi, P., Saha, A., Chaudhuri, S., and Basu, S. (2021). Precipitation dynamics of surrogate respiratory sessile droplets leading to possible fomites. Journal of Colloid and Interface Science, 600, 1-13.

Merhi T., Atasi O., Coetsier C., Lalanne B., and Roger K. (2022). Assessing suspension and infectivity times of virus-loaded aerosols involved in airborne transmission. Proceedings of the National Academy of Sciences, 119(32), e2204593119.

Rowe, B. R., Canosa, A., Drouffe, J. M., and Mitchell, J. B. A. (2021). Simple quantitative assessment of the outdoor versus indoor airborne transmission of viruses and COVID-19. Environmental Research, 198, 111189.

Poydenot, F., Abdourahamane, I., Caplain, E., Der, S., Haiech, J., Jallon, A., and Andreotti, B. (2022). Risk assessment for long-and short-range airborne transmission of SARS-CoV-2, indoors and outdoors. PNAS Nexus, 1(5), pgac223.

Morawska, L., Tang, J. W., Bahnfleth, W., Bluyssen, P. M., Boerstra, A., Buonanno, G., and Yao, M. (2020). How can airborne transmission of COVID-19 indoors be minimised?. Environment International, 142, 105832.

Gao, X., Wei, J., Lei, H., Xu, P., Cowling, B. J., and Li, Y. (2016). Building ventilation as an effective disease intervention strategy in a dense indoor contact network in an ideal city. PLoS One, 11(9), e0162481.

Kumar P., Singh A., and Singh R. (2021). Seasonal variation and size distribution in the airborne indoor microbial concentration of residential houses in Delhi and its impact on health. Aerobiologia, 37(4), 719-732.

Ruiz-Gil T., Acuña J.J., Fujiyoshi S., Tanaka D., Noda J., Maruyama F., and Jorquera M.A. (2020). Airborne bacterial communities of outdoor environments and their associated influencing factors. Environment International, 145, 106156.

Onchang, R., and Panyakapo, M. (2016). The physical environments and microbiological contamination in three different fitness centres and the participants’ expectations: Measurement and analysis. Indoor and Built Environment, 25(1), 213-228.

Boonrattanakij, N., Yomchinda, S., Lin, F.J., Bellotindos, L.M., and Lu, M.C. (2021). Investigation and disinfection of bacteria and fungi in sports fitness center. Environmental Science and Pollution Research, 28(37), 52576-52586.

Le Cann, P., Bonvallot, N., Glorennec, P., Deguen, S., Goeury, C., and Le Bot, B. (2011). Indoor environment and children's health: recent developments in chemical, biological, physical and social aspects. International Journal of Hygiene and Environmental Health, 215(1), 1-18.

Dima, C., Assadpour, E., Dima, S., and Jafari, S.M. (2020). Bioavailability of nutraceuticals: Role of the food matrix, processing conditions, the gastrointestinal tract, and nanodelivery systems. Comprehensive Reviews in Food Science and Food Safety, 19(3), 954-994.

Vadivukkarasan M., Dhivyaraja K., and Panchagnula M.V. (2020). Breakup morphology of expelled respiratory liquid: From the perspective of hydrodynamic instabilities, Physics of Fluids, 32(9), 094101.

Argyropoulos C.D., Skoulou V., Efthimiou G., and Michopoulos A.K. (2023). Airborne transmission of biological agents within the indoor built environment: a multidisciplinary review. Air Quality, Atmosphere & Health, 16(3), 477-533.

Jiayu, C., Qiaoqiao, R., Feilong, C., Chen, L., Jiguo, W., Zhendong, W., and Guoxia, Z. (2019). Microbiology community structure in bioaerosols and the respiratory diseases. Journal of Environmental Science and Public Health, 3(3), 347-357.

Cunliffe, A.J., Wang, R., Redfern, J., Verran, J., and Wilson, D.I. (2023). Effect of environmental factors on the kinetics of evaporation of droplets containing bacteria or viruses on different surfaces. Journal of Food Engineering, 336, 111195.

Redrow, J., Mao, S., Celik, I., Posada, J. A., & Feng, Z. G. (2011). Modeling the evaporation and dispersion of airborne sputum droplets expelled from a human cough. Building and Environment, 46(10), 2042-2051.

Ruiz-Gil, T., Acuña, J.J., Fujiyoshi, S., Tanaka, D., Noda, J., Maruyama, F., and Jorquera, M. A. (2020). Airborne bacterial communities of outdoor environments and their associated influencing factors. Environment International, 145, 106156.

Roos, Y.H. (2020). Water and pathogenic viruses inactivation—food engineering perspectives. Food Engineering Reviews, 12(3), 251-267.

Jaakkola, K., Saukkoriipi, A., Jokelainen, J., Juvonen, R., Kauppila, J., Vainio, O., and KIAS-Study Group. (2014). Decline in temperature and humidity increases the occurrence of influenza in cold climate. Environmental Health, 13, 1-8.

Jeong, D., Yi, H., Park, J.H., Park, H.W., and Park, K. (2022). A vertical laminar airflow system to prevent aerosol transmission of SARS-CoV-2 in building space: Computational fluid dynamics (CFD) and experimental approach. Indoor and Built Environment, 31(5), 1319-1338.

Sadrizadeh, S., Aganovic, A., Bogdan, A., Wang, C., Afshari, A., Hartmann, A., and Cao, G. (2021). A systematic review of operating room ventilation. Journal of Building Engineering, 40, 102693.

Mizuno, M., Yori, K., Takeuchi, T., Yamaguchi, T., Watanabe, K., Tomaru, Y., and Sekiya, I. (2023). Cross-contamination risk and decontamination during changeover after cell-product processing. Regenerative Therapy, 22, 30-38.

Aghniaey, S., Williams, J.G., Chaitow, S.D., and Rivera, L. (2021). Investigating air distribution designs for doas systems to reduce cross-contamination in open offices. ASHRAE Transactions, 127(1), 214-224.

Ghaddar, N., and Ghali, K. (2022). Ten questions concerning the paradox of minimizing airborne transmission of infectious aerosols in densely occupied spaces via sustainable ventilation and other strategies in hot and humid climates. Building and Environment, 214, 108901.

Otter, J.A., Yezli, S., and French, G.L. (2011). The role played by contaminated surfaces in the transmission of nosocomial pathogens. Infection Control & Hospital Epidemiology, 32(7), 687-699.

Ganegoda, N.C., Wijaya, K.P., Amadi, M., Erandi, K.H., and Aldila, D. (2021). Interrelationship between daily COVID-19 cases and average temperature as well as relative humidity in Germany. Scientific Reports, 11(1), 11302.

Izadyar, N., and Miller, W. (2022). Ventilation strategies and design impacts on indoor airborne transmission: A review. Building and Environment, 218, 109158.

Al-Rikabi, I.J., Karam, J., Alsaad, H., Ghali, K., Ghaddar, N., and Voelker, C. (2024). The impact of mechanical and natural ventilation modes on the spread of indoor airborne contaminants: A review. Journal of Building Engineering, 85, 108715.

Zhang, X., Li, Z., Hu, J., Yan, L., He, Y., Li, X., and Xu, H. (2021). The biological and chemical contents of atmospheric particulate matter and implication of its role in the transmission of bacterial pathogenesis. Environmental Microbiology, 23(9), 5481-5486.

Liu, H., Zhang, X., Zhang, H., Yao, X., Zhou, M., Wang, J., and Hu, B. (2018). Effect of air pollution on the total bacteria and pathogenic bacteria in different sizes of particulate matter. Environmental Pollution, 233, 483-493.

Zhang, X., Li, Z., Hu, J., Yan, L., He, Y., Li, X., and Xu, H. (2021). The biological and chemical contents of atmospheric particulate matter and implication of its role in the transmission of bacterial pathogenesis. Environmental Microbiology, 23(9), 5481-5486.

Burbank, A.J. (2023). Risk factors for respiratory viral infections: a spotlight on climate change and air pollution. Journal of Asthma and Allergy, 16, 183-194.

Nandiyanto, A.B.D., Ragadhita, R., Setiyo, M., Al Obaidi, A.S.M., and Hidayat, A. (2023). Particulate matter emission from combustion and non-combustion automotive engine process: Review and computational bibliometric analysis on its source, sizes, and health and lung impact. Automotive Experiences, 6(3), 599-623.

Sivakumar, R., and Lee, N.Y. (2022). Recent advances in airborne pathogen detection using optical and electrochemical biosensors. Analytica Chimica Acta, 1234, 340297.

Liu, Y., Zhang, L., Wei, W., Zhao, H., Zhou, Z., Zhang, Y., and Liu, S. (2015). Colorimetric detection of influenza A virus using antibody-functionalized gold nanoparticles. Analyst, 140(12), 3989-3995.

Wang, S., Deng, W., Yang, L., Tan, Y., Xie, Q., and Yao, S. (2017). Copper-based metal–organic framework nanoparticles with peroxidase-like activity for sensitive colorimetric detection of Staphylococcus aureus. ACS Applied Materials & Interfaces, 9(29), 24440-24445.

Xu, L., Wang, R., Kelso, L. C., Ying, Y., and Li, Y. (2016). A target-responsive and size-dependent hydrogel aptasensor embedded with QD fluorescent reporters for rapid detection of avian influenza virus H5N1. Sensors and Actuators B: Chemical, 234, 98-108.

Zhang, X., Wu, D., Zhou, X., Yu, Y., Liu, J., Hu, N., and Wu, Y. (2019). Recent progress in the construction of nanozyme-based biosensors and their applications to food safety assay. TrAC Trends in Analytical Chemistry, 121, 115668.

Weng, X., and Neethirajan, S. (2016). A microfluidic biosensor using graphene oxide and aptamer-functionalized quantum dots for peanut allergen detection. Biosensors and Bioelectronics, 85, 649-656.

Zhou, J., Fu, R., Tian, F., Yang, Y., Jiao, B., and He, Y. (2020). Dual enzyme-induced Au–Ag alloy nanorods as colorful chromogenic substrates for sensitive detection of Staphylococcus aureus. ACS Applied Bio Materials, 3(9), 6103-6109.

Sun, Y., He, X., Ji, J., Jia, M., Wang, Z., and Sun, X. (2015). A highly selective and sensitive electrochemical CS–MWCNTs/Au-NPs composite DNA biosensor for Staphylococcus aureus gene sequence detection. Talanta, 141, 300-306.

Bai, C., Lu, Z., Jiang, H., Yang, Z., Liu, X., Ding, H., and Shao, N. (2018). Aptamer selection and application in multivalent binding-based electrical impedance detection of inactivated H1N1 virus. Biosensors and Bioelectronics, 110, 162-167.

Bekir, K., Barhoumi, H., Braiek, M., Chrouda, A., Zine, N., Abid, N., and Mansour, H.B. (2015). Electrochemical impedance immunosensor for rapid detection of stressed pathogenic Staphylococcus aureus bacteria. Environmental Science and Pollution Research, 22, 15796-15803.

Eissa, S., Alhadrami, H.A., Al-Mozaini, M., Hassan, A.M., and Zourob, M. (2021). Voltammetric-based immunosensor for the detection of SARS-CoV-2 nucleocapsid antigen. Microchimica Acta, 188(6), 199.

Waller, D.F., Hew, B. E., Holdaway, C., Jen, M., and Peckham, G.D. (2016). Rapid detection of Bacillus anthracis spores using immunomagnetic separation and amperometry. Biosensors, 6(4), 61.

Noakes, C.J., and Sleigh, P.A. (2009). Mathematical models for assessing the role of airflow on the risk of airborne infection in hospital wards. Journal of the Royal Society Interface, 6(suppl_6), S791-S800.

Beggs, C.B., Shepherd, S.J., and Kerr, K.G. (2010). Potential for airborne transmission of infection in the waiting areas of healthcare premises: stochastic analysis using a Monte Carlo model. BMC Infectious Diseases, 10, 1-8.

Sheikhnejad, Y., Aghamolaei, R., Fallahpour, M., Motamedi, H., Moshfeghi, M., Mirzaei, P. A., and Bordbar, H. (2022). Airborne and aerosol pathogen transmission modeling of respiratory events in buildings: An overview of computational fluid dynamics. Sustainable Cities and Society, 79, 103704.

McMurry, P. H. (2000). A review of atmospheric aerosol measurements. Atmospheric Environment, 34(12-14), 1959-1999.

Shen, S., Jaques, P. A., Zhu, Y., Geller, M. D., and Sioutas, C. (2002). Evaluation of the SMPS–APS system as a continuous monitor for measuring PM2. 5, PM10 and coarse (PM2. 5− 10) concentrations. Atmospheric Environment, 36(24), 3939-3950.

Friehmelt, R., Büttner, H., and Ebert, F. (2000). On-line Characterisation of Aerosols–Comparability and Combination of Selected Measuring Devices. KONA Powder and Particle Journal, 18, 183-193.

Holubčík, M., Jandačka, J., Ďurčanský, P., and Čaja, A. (2020). Particulate matter measurement by using the particle sizers APS and SMPS. EAI Endorsed Trans. Energy Web, 8, 166000.

Close, A., Blackerby, J., Tunnell, H., Pender, J., Soule, E., and Sousan, S. (2023). Effects of e-cigarette liquid ratios on the gravimetric filter correction factors and real-time measurements. Aerosol and Air Quality Research, 23(10), 230011.

Song L., Zhou J., Wang C., Meng G., Li Y., Jarin M., Wu Z., and Xie X. (2022). Airborne pathogenic microorganisms and air cleaning technology development: A review. Journal of Hazardous Materials, 424, 127429.

Liu, G., Xiao, M., Zhang, X., Gal, C., Chen, X., Liu, L., and Clements-Croome, D. (2017). A review of air filtration technologies for sustainable and healthy building ventilation. Sustainable Cities and Society, 32, 375-396.

Salthammer, T. (2004). Emissions of volatile organic compounds from products and materials in indoor environments. Air Pollution: Indoor Air Pollution, 4, 37-71.

Ueki, H., Ujie, M., Komori, Y., Kato, T., Imai, M., and Kawaoka, Y. (2022). Effectiveness of HEPA filters at removing infectious SARS-CoV-2 from the air. Msphere, 7(4), e00086-22.

Luo, H., and Zhong, L. (2021). Ultraviolet germicidal irradiation (UVGI) for in-duct airborne bioaerosol disinfection: Review and analysis of design factors. Building and Environment, 197, 107852.

Mata, T.M., Martins, A.A., Calheiros, C.S., Villanueva, F., Alonso-Cuevilla, N.P., Gabriel, M.F., and Silva, G.V. (2022). Indoor air quality: A review of cleaning technologies. Environments, 9(9), 118.

Bono, N., Ponti, F., Punta, C., and Candiani, G. (2021). Effect of UV irradiation and TiO2-photocatalysis on airborne bacteria and viruses: an overview. Materials, 14(5), 1075.

Liu, Y., Li, L., Hu, T., Zhu, X., Wang, H., Zhang, W., and Li, Y. (2025). Enhanced photocatalytic performance of multifunctional composite Ag-Ag2Se@ CdSe/3DOM TiO2 with dual Z-scheme heterostructures coupling Ag NPs: Degradation, hydrogen production and antibacterial activity. Journal of Alloys and Compounds, 1021, 179571.

Foster, H.A., Ditta, I.B., Varghese, S., and Steele, A. (2011). Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity. Applied Microbiology and Biotechnology, 90, 1847-1868.

Bogdan, J., Zarzyńska, J., and Pławińska-Czarnak, J. (2015). Comparison of infectious agents susceptibility to photocatalytic effects of nanosized titanium and zinc oxides: a practical approach. Nanoscale Research Letters, 10, 1-15.

Fujishima, A., and Zhang, X. (2006). Titanium dioxide photocatalysis: present situation and future approaches. Comptes Rendus Chimie, 9(5-6), 750-760.

Jonges, M., Liu, W.M., van der Vries, E., Jacobi, R., Pronk, I., Boog, C., and Soethout, E. (2010). Influenza virus inactivation for studies of antigenicity and phenotypic neuraminidase inhibitor resistance profiling. Journal of Clinical Microbiology, 48(3), 928-940.

Bertrand, I., Schijven, J.F., Sánchez, G., Wyn‐Jones, P., Ottoson, J., Morin, T., and Gantzer, C. (2012). The impact of temperature on the inactivation of enteric viruses in food and water: a review. Journal of Applied Microbiology, 112(6), 1059-1074.

Vlaskin, M.S. (2022). Review of air disinfection approaches and proposal for thermal inactivation of airborne viruses as a life-style and an instrument to fight pandemics. Applied Thermal Engineering, 202, 117855.

Tao, S., Zhu, Y., Chen, M., and Shangguan, W. (2024). Advances in electrostatic plasma methods for purification of airborne pathogenic microbial aerosols: Mechanism, modeling and application. Environment & Health, 2(9), 596-617.

Lim, S.W.Y., Ow, S.Y., Sutarlie, L., Lee, Y.Y., Suwardi, A., Tan, C.K.I., and Su, X. (2024). Bioaerosol inactivation by a cold plasma ionizer coupled with an electrostatic precipitator. Microorganisms, 12(9), 1923.

Guo, H., Chen, J., Wang, L., Wang, A.C., Li, Y., An, C., and Wang, Z.L. (2021). A highly efficient triboelectric negative air ion generator. Nature Sustainability, 4(2), 147-153.

de Aquino Lima, F., and Guerra, V.G. (2024). Collection of nanoparticles by electrostatic precipitation operating over a wide range of electric fields. Separation Science and Technology, 59(5), 848-865.

Jaworek, A., Marchewicz, A., Sobczyk, A.T., Krupa, A., and Czech, T. (2018). Two-stage electrostatic precipitators for the reduction of PM2. 5 particle emission. Progress in Energy and Combustion Science, 67, 206-233.

Patial, S., Nazim, M., Khan, A.A.P., Raizada, P., Singh, P., Hussain, C.M., and Asiri, A.M. (2022). Sustainable solutions for indoor pollution abatement during COVID phase: A critical study on current technologies & challenges. Journal of Hazardous Materials Advances, 7, 100097.

Clausen, P.A., Frederiksen, M., Sejbæk, C.S., Sørli, J.B., Hougaard, K.S., Frydendall, K.B., and Wolkoff, P. (2020). Chemicals inhaled from spray cleaning and disinfection products and their respiratory effects. A comprehensive review. International Journal of Hygiene and Environmental Health, 229, 113592.

Bokare, A.D., and Choi, W. (2014). Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. Journal of Hazardous Materials, 275, 121-135.

Rai, N. K., Ashok, A., and Akondi, B. R. (2020). Consequences of chemical impact of disinfectants: safe preventive measures against COVID-19. Critical Reviews in Toxicology, 50(6), 513-520.

Calcagni, N., Venier, A. G., Nasso, R., Boudin, G., Jarrige, B., Parneix, P., and Quintard, B. (2023). Respiratory infection prevention: perceptions, barriers and facilitators after SARS-CoV-2. Infection, Disease & Health, 28(1), 54-63.

Koo, J., Jo, Y. M., Lee, T. J., Park, S., and Song, D. (2023). Ventilation strategy for simultaneous management of indoor particulate matter and airborne transmission risks–A case study for urban schools in South Korea. Building and Environment, 242, 110575.

Lu, G., Razum, O., Jahn, A., Zhang, Y., Sutton, B., Sridhar, D., and Müller, O. (2021). COVID-19 in Germany and China: mitigation versus elimination strategy. Global Health Action, 14(1), 1875601.

Li, T., Liu, Y., Li, M., Qian, X., and Dai, S. Y. (2020). Mask or no mask for COVID-19: A public health and market study. PloS one, 15(8), e0237691.

Roberts, J. D., and Tehrani, S. O. (2020). Environments, behaviors, and inequalities: reflecting on the impacts of the influenza and coronavirus pandemics in the United States. International Journal of Environmental Research and Public Health, 17(12), 4484.

Rauch, S., Jasny, E., Schmidt, K.E., and Petsch, B. (2018). New vaccine technologies to combat outbreak situations. Frontiers in Immunology, 9, 1963.

Mantel, C., and Cherian, T. (2020). New immunization strategies: adapting to global challenges. Bundesgesundheitsblatt-Gesundheitsforschung-Gesundheitsschutz, 63(1), 25-31.

Hafidzhah, M.A., Wijaya, R.M., Probojati, R.T., Kharisma, V.D., Ansori, A.N.M., and Parikesit, A. A. (2021). Potential vaccine targets for covid-19 and phylogenetic analysis based on the nucleocapsid phosphoprotein of indonesian SARS-CoV-2 isolates. Indonesian Journal of Pharmacy/Majalah Farmasi Indonesia, 32(3), 328-337.

Wong, M.T.J., Dhaliwal, S.S., Balakrishnan, V., Nordin, F., Norazmi, M.N., and Tye, G.J. (2023). Effectiveness of booster vaccinations on the control of covid-19 during the spread of omicron variant in Malaysia. International Journal of Environmental Research and Public Health, 20(2), 1647.

Kuai, Y.H., and Ser, H.L. (2021). COVID-19 situation in Thailand. Progress In Microbes & Molecular Biology, 4(1), 1-8.

Pirich, R., Weir, J., and Leyble, D. (2008). Self-cleaning and anti-contamination coatings for space exploration: an overview. Optical System Contamination: Effects, Measurements, and Control 2008, 7069, 99-106.

Gupta, N., Abd EL-Gawaad, N.S., and Mallasiy, L. O. (2024). Hospital-borne hazardous air pollutants and air cleaning strategies amid the surge of SARS-CoV-2 new variants. Heliyon, 10(20).

Yigitcanlar, T., Desouza, K. C., Butler, L., and Roozkhosh, F. (2020). Contributions and risks of artificial intelligence (AI) in building smarter cities: Insights from a systematic review of the literature. Energies, 13(6), 1473.

Nurramadhani, A., Riandi, R., Permanasari, A., and Suwarma, I.R. (2024). Low-carbon food consumption for solving climate change mitigation: Literature review with bibliometric and simple calculation application for cultivating sustainability consciousness in facing sustainable development goals (SDGs). Indonesian Journal of Science and Technology, 9(2), 261-286.

Krishnan, A., Al-Obaidi, A.S.M., and Hao, L.C. (2024). Towards sustainable wind energy: A systematic review of airfoil and blade technologies over the past 25 years for supporting sustainable development goals (SDGs). Indonesian Journal of Science and Technology, 9(3), 623-656.

Djirong, A., Jayadi, K., Abduh, A., Mutolib, A., Mustofa, R.F., and Rahmat, A. (2024). Assessment of student awareness and application of eco-friendly curriculum and technologies in Indonesian higher education for supporting sustainable development goals (SDGs): A case study on environmental challenges. Indonesian Journal of Science and Technology, 9(3), 657-678.

Waardhani, A.W., Noviyanti, A.R., Kusrini, E., Nugrahaningtyas, K.D., Prasetyo, A.B., Usman, A., Irwansyah, F.S., and Juliandri, J. (2025). A study on sustainable eggshell-derived hydroxyapatite/CMC membranes: Enhancing flexibility and thermal stability for sustainable development goals (SDGs). Indonesian Journal of Science and Technology, 10(2), 191-206.

Yustiarini, D., Soemardi, B.W., and Pribadi, K.S. (2025). Integrating multi-stakeholder governance, engineering approaches, and bibliometric literature review insights for sustainable regional road maintenance: Contribution to sustainable development goals (SDGs) 9, 11, and 16. Indonesian Journal of Science and Technology, 10(2), 367-398.

Merzouki, M., Khibech, O., Fraj, E., Bouammali, H., Bourhou, C., Hammouti, B., Bouammali, B., and Challioui, A. (2025). Computational engineering of malonate and tetrazole derivatives targeting SARS-CoV-2 main protease: Pharmacokinetics, docking, and molecular dynamics insights to support the sustainable development goals (SDGs), with a bibliometric analysis. Indonesian Journal of Science and Technology, 10(2), 399-418.

Namoussa, T.Y., Boucerredj,L., Khechekhouche, A., Kemerchou, I., Zair, N., Jahangiri, M., Miloudi, A., and Siqueira, A. (2025). Innovative nanofluid encapsulation in solar stills: Boosting water yield and efficiency under extreme climate supporting sustainable development goals (SDGs). Indonesian Journal of Science and Technology, 10(3), 419-426.

Glovatskii, O., Kalimbetov, B., Ergashev, R., Kholbutaev, B., Pardaev, M., Ergasheva, G., Nasirova, N., and Khimmataliev, D.O. (2025). Modernization of Submersible Pump Designs for Sustainable Irrigation: A Bibliometric and experimental contribution to sustainable development goals (SDGs). Indonesian Journal of Science and Technology, 10(3), 427.




DOI: https://doi.org/10.17509/ajse.v5i2.86303

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Universitas Pendidikan Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

ASEAN Journal of Science and Engineering (AJSE) is published by UPI 

View My Stats