Social Media Dynamics: Twitter Users’ Responses to the Presence of Naturalized Players in Indonesia's National Football Team
Abstract
Keywords
Full Text:
PDFReferences
D. Khurana, A. Koli, K. Khatter, and S. Singh, “Natural language processing: state of the art, current trends and challenges,” Multimed. Tools Appl., vol. 82, no. 3, pp. 3713–3744, Jan. 2023, doi: 10.1007/S11042-022-13428-4/FIGURES/3.
M. Wankhade, A. C. S. Rao, and C. Kulkarni, “A survey on sentiment analysis methods, applications, and challenges,” Artif. Intell. Rev. 2022 557, vol. 55, no. 7, pp. 5731–5780, Feb. 2022, doi: 10.1007/S10462-022-10144-1.
L. Bassel, P. Monforte, D. Bartram, and K. Khan, “Naturalization policies, citizenship regimes, and the regulation of belonging in anxious societies,” Ethnicities, vol. 21, no. 2, pp. 259–270, 2021, doi: 10.1177/1468796820963959.
R. Das and T. D. Singh, “Multimodal Sentiment Analysis: A Survey of Methods, Trends, and Challenges,” ACM Comput. Surv., vol. 55, no. 13, Jul. 2023, doi: 10.1145/3586075.
A. Mathew, P. Amudha, and S. Sivakumari, “Deep Learning Techniques: An Overview,” Adv. Intell. Syst. Comput., vol. 1141, pp. 599–608, 2021, doi: 10.1007/978-981-15-3383-9_54.
E. Yulianti, N. Khairu Nissa, J. D. Sudjono D Pusponegoro, and K. Beji, “ABSA of Indonesian customer reviews using IndoBERT: single- sentence and sentence-pair classification approaches,” Bull. Electr. Eng. Informatics, vol. 13, no. 5, pp. 3579–3589, Oct. 2024, doi: 10.11591/EEI.V13I5.8032.
D. I. Putri, A. N. Alfian, M. Y. Putra, and P. D. Mulyo, “IndoBERT Model Analysis: Twitter Sentiments on Indonesia’s 2024 Presidential Election,” J. Appl. informatics Comput., vol. 8, no. 1, pp. 7–12, Jul. 2024, doi: 10.30871/JAIC.V8I1.7440.
F. Peters and M. Vink, “Heterogeneous Naturalization Effects of Dual Citizenship Reform in Migrant Destinations: Quasi-Experimental Evidence from Europe,” Am. Polit. Sci. Rev., vol. 118, no. 3, pp. 1541–1548, Aug. 2024, doi: 10.1017/S0003055423001193.
T. Aichner, M. Grünfelder, O. Maurer, and D. Jegeni, “Twenty-Five Years of Social Media: A Review of Social Media Applications and Definitions from 1994 to 2019,” Cyberpsychology, Behav. Soc. Netw., vol. 24, no. 4, pp. 215–222, 2021, doi: 10.1089/cyber.2020.0134.
A. Bruns, “After the ‘APIcalypse’: social media platforms and their fight against critical scholarly research,” Disinformation Data Lockdown Soc. Platforms, pp. 14–36, Dec. 2021, doi: 10.4324/9781003206972-2.
Y. Gorodnichenko, T. Pham, and O. Talavera, “Social media, sentiment and public opinions: Evidence from #Brexit and #USElection,” Eur. Econ. Rev., vol. 136, p. 103772, Jul. 2021, doi: 10.1016/J.EUROECOREV.2021.103772.
V. Govindan and V. Balakrishnan, “A machine learning approach in analysing the effect of hyperboles using negative sentiment tweets for sarcasm detection,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 8, pp. 5110–5120, Sep. 2022, doi: 10.1016/J.JKSUCI.2022.01.008.
A. H. Shapiro, M. Sudhof, and D. J. Wilson, “Measuring news sentiment,” J. Econom., vol. 228, no. 2, pp. 221–243, Jun. 2022, doi: 10.1016/J.JECONOM.2020.07.053.
M. E. Basiri, S. Nemati, M. Abdar, S. Asadi, and U. R. Acharrya, “A novel fusion-based deep learning model for sentiment analysis of COVID-19 tweets,” Knowledge-Based Syst., vol. 228, p. 107242, Sep. 2021, doi: 10.1016/J.KNOSYS.2021.107242.
N. Jing, Z. Wu, and H. Wang, “A hybrid model integrating deep learning with investor sentiment analysis for stock price prediction,” Expert Syst. Appl., vol. 178, p. 115019, Sep. 2021, doi: 10.1016/J.ESWA.2021.115019.
S. Bengesi, T. Oladunni, R. Olusegun, and H. Audu, “A Machine Learning-Sentiment Analysis on Monkeypox Outbreak: An Extensive Dataset to Show the Polarity of Public Opinion From Twitter Tweets,” IEEE Access, vol. 11, pp. 11811–11826, 2023, doi: 10.1109/ACCESS.2023.3242290.
Muhammad Ikram Kaer Sinapoy, Yuliant Sibaroni, and Sri Suryani Prasetyowati, “Comparison of LSTM and IndoBERT Method in Identifying Hoax on Twitter,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 7, no. 3, pp. 657–662, 2023, doi: 10.29207/resti.v7i3.4830.
M. A. K. Fata, S. Sumpeno, A. D. Wibawa, and D. A. Feryando, “Evaluating the Sentiment Analysis from Auto-Generated Summary Text Using IndoBERT Fine-Tuning Model in Indonesian News Text,” Proc. - 2023 15th IEEE Int. Conf. Comput. Intell. Commun. Networks, CICN 2023, pp. 822–829, 2023, doi: 10.1109/CICN59264.2023.10402345.
M. Yarchi, C. Baden, and N. Kligler-Vilenchik, “Political Polarization on the Digital Sphere: A Cross-platform, Over-time Analysis of Interactional, Positional, and Affective Polarization on Social Media,” Polit. Commun., pp. 1–42, Mar. 2021, doi: 10.1080/10584609.2020.1785067.
DOI: https://doi.org/10.17509/jmai.v2i1.80033
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.