Review of Banjarnese Neural Machine Translation Development With Minimal Resources

Ali Muhammad, Novia Winda, Angge Firizkiansah, Dita Setiawan, Siti Herawati Fransiska Dewi, Imron Rizki Maulana, Miri Ardiansyah

Abstract


With the advancement of information technology, the application of machine learning in the property industry, particularly for house price prediction, has become increasingly important. Technology plays a crucial role in speeding up and enhancing the accuracy of property buying and selling processes. Therefore, the role of machine learning technology can be utilized to meet the need for improving the accuracy of house price predictions in major cities of developing countries, such as Bandung. This research aims to analyze the effectiveness of the Artificial Neural Network and Random Forest algorithms in predicting house prices in Bandung. The data used includes house sales data in Bandung, covering land area, building area, number of bedrooms, number of bathrooms, number of parking spaces, and the subdistrict location. The analysis of the algorithms is conducted by comparing the performance testing results of both algorithms using performance metrics for regression models such as Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and R-Square (R2). Additionally, this research analyzes which data ratio among the training, validation, and test data yields the best results. The research findings indicate that the model with a data ratio of 60:20:20 produces the best performance for both algorithms. The Random Forest algorithm demonstrates superior performance with results of MAE: 0.0470; MSE: 0.0079; RMSE: 0.0888; and R2: 0.7085.


Keywords


Banjarnese language; Minimal resources; Neural machine translation; Systematic literature review.

Full Text:

PDF

References


Barmawi, A. M., and Muhammad, A. 2019. Paraphrasing method based on contextual synonym substitution. Journal of ICT Research and Applications, 13(3), 257–282.

Briggs, N. 2018. Neural machine translation tools in the language learning classroom : Students ’ use , perceptions , and analyses. The Jaltcalljournal, 14(1), 3–24.

Das, S. B., Panda, D., and Mishra, T. K. 2024. Statistical Machine Translation for Indic Languages. Natural Language Processing Applications for Low-Resource Languages, 31(2), 328–345.

Dewangan, S., Alva, S., Joshi, N., and Bhattacharyya, P. 2021. Experience of neural machine translation between Indian languages. Machine Translation, 35(1), 71–99.

Hutchins, W. J. 1995. MACHINE TRANSLATION: A BRIEF HISTORY. Oxford: Pergamon Press, 431–445.

Ismailia, T. 2023. The Analysis of Machine Translation Performance on Translating Informative

Text from English into Indonesian. Guage Teaching, Linguistics, and Literatur. Vol 3(2), 129–138.

Isnaeni, D., Afra, N., Uliniansyah, M. T., Latief, A. D., Agency, I., Wabula, Y., and Agency, I. 2024.

Neural Machine Translation for Low-Resource Languages : Experiments on MakassarIndonesian. 2024 International Conference on Computer, Control, Informatics and Its Applications (IC3INA) Neural, December.

KAUR, S. R. E.-S. A. L. M. P. S. R. S. M. A. R. 2013. Neural Machine Translation for Low-Resource Languages: A Survey. ACM Computing Surveys, 55(11), 1–37.

Larasati, S. D. 2012. IDENTIC corpus: Morphologically enriched Indonesian-english parallel corpus. Proceedings of the 8th International Conference on Language Resources and Evaluation, LREC 2012, 902–906.

Lei, S., and Li, Y. 2023. English Machine translation System Based on Neural Network Algorithm Algorithm. 3rd International Conference on Machine Learning and Big Data Analytics for IoT Security and Privacy, 228, 409–420.

Lyu, C., Du, Z., Xu, J., Duan, Y., Wu, M., Lynn, T., Aji, A. F., Wong, D. F., Liu, S., and Wang, L. 2024. A Paradigm Shift : The Future of Machine Translation Lies with Large Language Models. ELRA Language Resource Association: CC BY-NC 4.0, 1339–1352.

Muhammad, A., and Kamariah. 2020. Pengurai Kalimat Bahasa Banjar Dengan Menggunakan Parser Pc-Patr. Jurnal Linguistik Komputasional (JLK), 3(1), 20.

Muhammad, A., dan Widyastuti, N. 2024. Pengembangan Aplikasi Part-of-Speech Tagger Bahasa Banjar Menggunakan Metode Pengembangan DevOps. JIKOMTI: Jurnal Ilmiah Ilmu Komputer Dan Teknologi Informasi, 1(1).

Okta, B., Miranda, S., Yuliansyah, H., and Biddinika, M. K. 2012. Machine Translation Indonesian Bengkulu Malay Using Neural Machine Translation-LSTM. IJCCS (Indonesian Journal of Computing and Cybernetics Systems).

Purnajaya, A. R., Indriani, F., dan Faisal, M. R. 2020. Pengenalan Suara Pada Kamus Banjar - Indonesia dan Indonesia - Banjar Menggunakan Statistik Inferensi. Jurnal Ilmiah Informatika (JIF), 08(01).

Putri, S. A., and Dewi, H. D. 2021. The Translation Of Entertainment News From English To

Indonesian With Machine Translation. Journal of English Language and Culture, 11(2), 153–168.

Sakre, M. M. 2019. Machine translation status and its effect on business. Journal of the ACS, 10(May).

Saunders, D., Sallis, R., and Byrne, B. 2020. Neural Machine Translation Doesn ’ t Translate Gender Coreference Right Unless You Make It. Proceedings Ofthe Second Workshop on Gender Bias in Natural Language Processing, 35–43.

Shah, V., Valiullah, S., and Makwana, M. Y. 2023. Neural machine translation to local languages. Indus University.

Siu, S. C. 2023. Revolutionizing Translation with AI : Unravelling Neural Machine Translation and Generative Pre-trained Large Language Models An Overview of Deep Learning. School of Translation and Foreign Languages, 1–19.

Sujarwo. 2020. Students ’ Perception s of Using Machine Translation Tools In the EFL Classroom. Al-Lisan : Jurnal Bahasa, 5(2), 230–241.

Tan, Z., Wang, S., Yang, Z., Chen, G., and Huang, X. 2021. Neural machine translation : A review of methods , resources , and tools. AI Open, 1(October 2020), 5–21.

Tars, M., Andre, T., and Fiˇ, M. 2021. Extremely low-resource machine translation for closely related languages. Proceedings of the 23rd Nordic Conference on Computational Linguistics (NoDaLiDa), 41–52.

Tattar, andre, Purason, T., Kuulmets, H.-A., Luhtaru, A., Ratsep, L., Tars, M., Pinnis, M., Bergmanis, T., and Fishel, M. 2022. Open and Competitive Multilingual Neural Machine Translation in Production. Baltic J. Modern Computing, 10(3), 422–434.

Team, N. 2024. Scaling neural machine translation to 200 languages. Nature, 630.

Wardhana, H., Dharma, I. M. Y., Marzuki, K., and Hidayatullah, I. S. 2024. Implementation of Neural Machine Translation in Translating from Indonesian to Sasak Language. Matrik: Jurnal Manajemen, Teknik Informatika, Dan Rekayasa Komputer, 23(2), 465–476.

Widiatmika, P. W., Bagus, I., Ari, M., Made, N., and Widya, Y. 2018. Examining The Result Of Machine Translation For Linguistic Textbook From English To Indonesian. The 2nd English National Seminar English Education Study Program STKIP PGRI PACITAN, 54–65.

Winda, N., dan Muhammad, A. 2023. Pengembangan Parsing PCPATR sebagai Preservasi Bahasa dan Sastra Banjar. Jurnal Onoma: Pendidikan, Bahasa Dan Sastra, 9(2), 2023.




DOI: https://doi.org/10.17509/seict.v6i1.86768

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Journal of Software Engineering, Information and Communication Technology (SEICT)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Journal of Software Engineering, Information and Communicaton Technology (SEICT), 
(e-ISSN:
2774-1699 | p-ISSN:2744-1656) published by Program Studi Rekayasa Perangkat Lunak, Kampus UPI di Cibiru.


 Indexed by.