Smart Materials and Their Application in Robotic Hand Systems: A State of the Art

Paola Andrea Castiblanco, José Luis Ramirez, Astrid Rubiano


The use of soft robotics and smart materials for the design of devices that help the population in different tasks has gained a rising interest. Medicine is one of the fields where its implementation has shown significant advances. However, there are works related to applications, directed to the human body especially in replacement of devices for the upper limb. This document aims to explore the state of the art relating to the study of soft robotics, the implementation of smart materials, and the artificial muscles in the design or construction of hand prostheses or robotic devices analogous to the human hand.


Hand; Prosthesis; Prosthetic hand; Robotic; Smart material; Soft robotics; Soft robotics applications

Full Text:



Abdullah, E. J., Soriano, J., de Bastida Garrido, I. F., and Majid, D. L. A. (2020). Accurate position control of shape memory alloy actuation using displacement feedback and self-sensing system. Microsystem Technologies, 1-14.

Ahmadi, A., Mahdavian, M., Rad, N. F., Yousefi-Koma, A., Alidoost, F., and Bazrafshani, M. A. (2015, October). Design and fabrication of a Robotic Hand using shape memory alloy actuators. In 2015 3rd RSI International Conference on Robotics and Mechatronics (ICROM). IEEE, 325-329.

Almubarak, Y., and Tadesse, Y. (2017). Twisted and coiled polymer (TCP) muscles embedded in silicone elastomer for use in soft robot. International Journal of Intelligent Robotics and Applications, 1(3), 352-368.

Almubarak, Y., Punnoose, M., Maly, N. X., Hamidi, A., and Tadesse, Y. (2020). KryptoJelly: a jellyfish robot with confined, adjustable pre-stress, and easily replaceable shape memory alloy NiTi actuators. Smart Materials and Structures, 29(7), 075011.

Andrianesis, K., and Tzes, A. (2015). Development and control of a multifunctional prosthetic hand with shape memory alloy actuators. Journal of Intelligent and Robotic Systems, 78(2), 257-289.

Atasoy, A., Erenay, B., Kaplanoglu, E., Garipcan, B., Guclu, B., and Ozkan, M. (2017). Ionic Electroactive Polymer Actuated Prosthetic Finger Design. In 2017 21st National Biomedical Engineering Meeting (BIYOMUT). IEEE, i-iv.

Aw, K. C., and McDaid, A. J. (2014). Bio-applications of ionic polymer metal composite transducers. Smart Materials and Structures, 23(7), 074005.

Bhatti, M. R. A., Bilotti, E., Zhang, H., Varghese, S., Verpaalen, R. C., Schenning, A. P., and Peijs, T. (2020). Ultra-high actuation stress polymer actuators as light-driven artificial muscles. ACS Applied Materials and Interfaces, 12(29), 33210-33218.

Bilodeau, R. A., Yuen, M. C., Case, J. C., Buckner, T. L., and Kramer-Bottiglio, R. (2018, October). Design for Control of a Soft Bidirectional Bending Actuator. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 1-8.

Bloom, J., Tabatabaie, S. E., Shahinpoor, M., and Hejrati, B. (2020). An investigation of multimodal sensing capabilities of ionic polymer-metal composites. Smart Materials and Structures, 29(4), 045031.

Carrico, J. D., Fleming, M., Tsugawa, M. A., and Leang, K. K. (2015). Precision feedback and feedforward control of ionic polymer metal composite actuators. In Ionic Polymer

Castiblanco, P. A., Balcázar-Camacho, D. A., Ramirez, J. L., and Rubiano, A. (2020, October). Towards a Conceptual Framework for the Development of Artificial Muscles Using SMA. In Workshop on Engineering Applications, Springer, Cham, 257-267.

Chattaraj, R., Bhattacharya, S., Roy, A., Mazumdar, A., Bepari, B., and Bhaumik, S. (2014, March). Gesture based control of IPMC actuated gripper. In 2014 Recent Advances in Engineering and Computational Sciences (RAECS) (pp. 1-6). IEEE.

Chen, D., Li, X., Jin, J., and Ruan, C. (2019a). An articulated finger driven by single-mode piezoelectric actuator for compact and high-precision robot hand. Review of Scientific Instruments, 90(1), 015003.

Chen, L., Weng, M., Zhou, P., Huang, F., Liu, C., Fan, S., and Zhang, W. (2019b). Graphene‐Based Actuator with Integrated‐Sensing Function. Advanced Functional Materials, 29(5), 1806057.

Chen, Y., Guo, S., Gao, J., Hao, L., and Han, C. (2018a). Hybrid artificial muscle underactuated humanoid robotic hand. In 2017 IEEE International Conference on Real-time Computing and Robotics (RCAR) (pp. 581-586). IEEE.

Chen, Y., Guo, S., Yang, H., and Hao, L. (2018b). Design of Modular Humanoid Robotic Hand Driven by SMA Actuator. In Robotic Grasping and Manipulation Challenge (pp. 39-56). Springer, Cham.

Cho, K. H., Kim, Y., Yang, S. Y., Kim, K., Park, J. H., Rodrigue, H., and Choi, H. R. (2019). Artificial musculoskeletal actuation module driven by twisted and coiled soft actuators. Smart Materials and Structures, 28(12), 125010.

Cutkosky, M. R. (1989). On grasp choice, grasp models, and the design of hands for manufacturing tasks. IEEE Transactions on Robotics and Automation, 5(3), 269-279.

Deimel, R., and Brock, O. (2016). A novel type of compliant and underactuated robotic hand for dexterous grasping. The International Journal of Robotics Research, 35(1-3), 161-185.

Dilibal, S., and Engeberg, E. D. (2015, July). Finger-like manipulator driven by antagonistic nickel-titanium shape memory alloy actuators. In 2015 International Conference on Advanced Robotics (ICAR). IEEE, 152-157.

Doroudchi, A., and Zakerzadeh, M. R. (2017, October). An experimental study on controlling a fast response SMA-actuated rotary actuator. In 2017 5th RSI International Conference on Robotics and Mechatronics (ICRoM) (pp. 144-149). IEEE.

Duan, L., D'hooge, D. R., and Cardon, L. (2020). Recent progress on flexible and stretchable piezoresistive strain sensors: from design to application. Progress in Materials Science, 114(2020), 10617.

Engeberg, E. D., Dilibal, S., Vatani, M., Choi, J. W., and Lavery, J. (2015). Anthropomorphic finger antagonistically actuated by SMA plates. Bioinspiration and biomimetics, 10(5), 056002.

Feix, T., Romero, J., Schmiedmayer, H. B., Dollar, A. M., and Kragic, D. (2015). The grasp taxonomy of human grasp types. IEEE Transactions on human-machine systems, 46(1), 66-77.

Guan, Q., Sun, J., Liu, Y., and Leng, J. (2020). Status of and trends in soft pneumatic robotics. SCIENTIA SINICA Technologica, 50(7), 897-934.

Guanjun, B., Hui, F., Lingfeng, C., Yuehua, W., Fang, X., Qinghua, Y., and Libin, Z. (2018). Soft Robotics: Academic insights and perspectives through bibliometric analysis. Soft Robot, 5(3), 229-241.

Hamburg, E., Vunder, V., Johanson, U., Kaasik, F., and Aabloo, A. (2016, April). Soft shape-adaptive gripping device made from artificial muscle. In Electroactive Polymer Actuators and Devices (EAPAD). International Society for Optics and Photonics, 9798(2016), 97981Q.

Hatze, H. (1978). A general myocybernetic control model of skeletal muscle. Biological Cybernetics, 28(3), 143-157.

Hill, A. V. (1950). The series elastic component of muscle. Proceedings of the Royal Society of London. Series B, Biological Sciences, 137(887), 273-280.

Histed, R., Ngo, J., Hussain, O. A., Lapins, C., Leang, K. K., Liao, Y., and Aureli, M. (2020, October). Ionic Polymer Metal Composite Sensors With Engineered Interfaces (eIPMCs): Compression Sensing Modeling and Experiments. In Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 84287, V002T34A001.

Huang, H. P., Liu, Y. H., Lee, W. C., Kuan, J. Y., and Huang, T. H. (2015). Rehabilitation robotic prostheses for upper extremity. Contemporary Issues in Systems Science and Engineering, 661-697.

Jaber, M. B., Trojette, M. A., and Najar, F. (2015). A finite element analysis of a new design of a biomimetic shape memory alloy artificial muscle. Smart Structures and Systems, 16(3), 479-496.

Jin, H., Dong, E., Xu, M., and Yang, J. (2020). A Smart and hybrid composite finger with biomimetic tapping motion for soft prosthetic hand. Journal of Bionic Engineering, 17, 484-500.

Jung, J., Park, M., Kim, D., and Park, Y. L. (2020). Optically sensorized elastomer air chamber for proprioceptive sensing of soft pneumatic actuators. IEEE Robotics and Automation Letters, 5(2), 2333-2340.

Karami, F., and Tadesse, Y. (2017). Modeling of twisted and coiled polymer (TCP) muscle based on phenomenological approach. Smart Materials and Structures, 26(12), 125010.

Khairudin, M., Refalda, R., Yatmono, S., Pramono, H. S., Triatmaja, A. K., and Shah, A. The mobile robot control in obstacle avoidance using fuzzy logic controller. Indonesian Journal of Science and Technology, 5(3), 334-351.

Kim, H. I., Han, M. W., Song, S. H., and Ahn, S. H. (2016). Soft morphing hand driven by SMA tendon wire. Composites Part B: Engineering, 105, 138-148.

Koo, B., Na, D. S., and Lee, S. (2009). Control of IPMC actuator using self-sensing method. IFAC Proceedings Volumes, 42(3), 267-270.

Lagoudas, D. C. (Ed.). (2008). Shape memory alloys: modeling and engineering applications. Springer Science and Business Media.

Laschi, C., and Cianchetti, M. (2014). Soft robotics: new perspectives for robot bodyware and control. Frontiers in Bioengineering and Biotechnology, 2(3), 1-5.

Lau, C. Y., and Chai, A. (2012). The Development of a low cost pneumatic air muscle actuated anthropomorphic robotic hand. Procedia Engineering, 41(2012), 737-742.

Lee, J. H., Chung, Y. S., and Rodrigue, H. (2019). Application of SMA spring tendons for improved grasping performance. Smart Materials and Structures, 28(3), 035006.

Li D-H, Jin Y-Z, Guo Z-W, Wang B-R (2019b) Design of new shape memory alloy actuator and three-fingered dexterous hand. Journal Engineering Design, 26(5), 506–512.

Li H, Yao J, Zhang T, et al (2020) Design and Analysis of a High-load Pneumatic Soft Gripper. Jixie Gongcheng Xuebao. Journal Mechanical Engineering, 56(3), 56–63.

Li, C., Gu, X., Xiao, X., Zhu, G., Prituja, A. V., and Ren, H. (2019a). Transcend anthropomorphic robotic grasping with modular antagonistic mechanisms and adhesive soft modulations. IEEE Robotics and Automation Letters, 4(3), 2463-2470.

Li, H., Yao, J., Zhou, P., Chen, X., Xu, Y., and Zhao, Y. (2019c). High-load soft grippers based on bionic winding effect. Soft Robotics, 6(2), 276-288.

Li, J., and Tian, H. (2018). Position control of SMA actuator based on inverse empirical model and SMC-RBF compensation. Mechanical Systems and Signal Processing, 108(2018), 203-215.

Li, J., Zu, L., Zhong, G., He, M., Yin, H., and Tan, Y. (2017). Stiffness characteristics of soft finger with embedded SMA fibers. Composite Structures, 160(2017), 758-764.

Lin, N., Zheng, H., Li, Y., Wang, R., Chen, X., and Zhang, X. (2020). Self-Sensing Pneumatic Compressing Actuator. Frontiers in Neurorobotics, 14(2020), 572856.

Liu, M., Hao, L., Zhang, W., and Zhao, Z. (2020). A novel design of shape-memory alloy-based soft robotic gripper with variable stiffness. International Journal of Advanced Robotic Systems, 17(1), 1729881420907813.

Liu, M., Hao, L., Zhang, W., Chen, Y., and Chen, J. (2019, July). Reinforcement Learning Control of a Shape Memory Alloy-based Bionic Robotic Hand. In 2019 IEEE 9th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER). IEEE, 969-973.

Maffiodo, D., and Raparelli, T. (2017). Three-fingered gripper with flexure hinges actuated by shape memory alloy wires. International Journal of Automation Technology, 11(3), 355-360.

Maroti, P., Varga, P., Abraham, H., Falk, G., Zsebe, T., Meiszterics, Z., and Nyitrai, M. (2018). Printing orientation defines anisotropic mechanical properties in additive manufacturing of upper limb prosthetics. Materials Research Express, 6(3), 035403.

Millard, M., Uchida, T., Seth, A., and Delp, S. L. (2013). Flexing computational muscle: modeling and simulation of musculotendon dynamics. Journal of biomechanical engineering, 135(2), 021005.

Nurzaman, S. G., Iida, F., Laschi, C., Ishiguro, A., and Wood, R. (2013). Soft robotics [tc spotlight]. IEEE Robotics and Automation Magazine, 20(3), 24-95.

Ochoa, H. A., Timmons, C., Watts, C., Lynn, M., and Ortiz, V. (2020). Fully automated fabrication of twisted coiled polymer actuators with parameter control. The Texas Journal of Science, 72(1), 1.

Ozkan, M., Takka, S., Kaplanoglu, E., Kuchimov, S., Toptas, E., and Atasoy, A. (2017). SMA actuated prosthetic finger design| SHA Eyleyicili Protez Parmak Tasarimi.

Park, C. H., Choi, K. J., and Son, Y. S. (2019). Shape memory alloy-based spring bundle actuator controlled by water temperature. IEEE/ASME Transactions on Mechatronics, 24(4), 1798-1807.

Quiroz, C. Q., Zapata, A. J., Jimenez, M. T. D. O., and Bolaños, P. A. V. (2015). Estudio descriptivo de condiciones del muñón en personas usuarias de prótesis de miembros inferiores. Revista Colombiana de Medicina Física y Rehabilitación, 25(2), 94-103.

Rahman, N., D'Imperio, M., Carbonari, L., Chen, F., Canali, C., Caldwell, D. G., and Cannella, F. (2015, December). A novel bio-inspired modular gripper for in-hand manipulation. In 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, 7-12.

Ramirez Arias, J. L. (2016). Development of an artificial muscle for a soft robotic hand prosthesis (Doctoral dissertation, Paris 10).

Ramírez, J. L., Rubiano, A., Jouandeau, N., Gallimard, L., and Polit, O. (2017). Artificial Muscles Design Methodology Applied to Robotic Fingers. In Smart Structures and Materials. Springer, Cham, 209-225.

Ramirez, J., Rubiano, A., and Castiblanco, P. (2019, September). Soft Driving Epicyclical Mechanism for Robotic Finger. Actuators, 8(3), 58.

Rubiano Fonseca, A. (2016). Smart control of a soft robotic hand prosthesis (Doctoral dissertation, Paris 10).

Saharan, L., de Andrade, M. J., Saleem, W., Baughman, R. H., and Tadesse, Y. (2017). iGrab: hand orthosis powered by twisted and coiled polymer muscles. Smart Materials and Structures, 26(10), 105048.

Shahinpoor, M., Bar-Cohen, Y., Simpson, J. O., and Smith, J. (1998). Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles-a review. Smart Materials and Structures, 7(6), R15.

She, Y., Li, C., Cleary, J., and Su, H. J. (2015). Design and fabrication of a soft robotic hand with embedded actuators and sensors. Journal of Mechanisms and Robotics, 7(2), 021007.

Silva, A. F., da Silva, S. A., dos Santos, A. J., Ries, A., Souto, C. R., and de Araújo, C. J. (2018). Fuzzy control of a robotic finger actuated by shape memory alloy wires. Journal of Dynamic Systems, Measurement, and Control, 140(6), 064502.

Simone, F., Rizzello, G., and Seelecke, S. (2017). Metal muscles and nerves—a self-sensing SMA-actuated hand concept. Smart Materials and Structures, 26(9), 095007.

Simone, F., Rizzello, G., Seelecke, S., and Motzki, P. (2020). A soft five-fingered hand actuated by Shape Memory Alloy wires: design, manufacturing, and evaluation. Frontiers in Robotics and AI, 7(202), 608841.

Simone, F., Rizzello, G., Seelecke, S., Borreggine, S., and Naso, D. (2019, June). Modeling and Identification of a Shape Memory Alloy Robotic Finger Actuator. In 2019 18th European Control Conference (ECC), IEEE, 1097-1102.

Tao, Y. D., and Gu, G. Y. (2017, August). Design of a soft pneumatic actuator finger with self-strain sensing. In International conference on intelligent robotics and applications. Springer, Cham, 140-150.

Tawk, C., in het Panhuis, M., Spinks, G. M., and Alici, G. (2020, July). 3D Printed Soft Pneumatic Bending Sensing Chambers for Bilateral and Remote Control of Soft Robotic Systems. In 2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM) (pp. 922-927). IEEE.

Tawk, C., Spinks, G. M., in het Panhuis, M., and Alici, G. (2019). 3d printable linear soft vacuum actuators: Their modeling, performance quantification and application in soft robotic systems. IEEE/ASME Transactions on Mechatronics, 24(5), 2118-2129.

Taylor, C., and Schwarz, R. J. (1955). The anatomy and mechanics of the human hand. Artificial limbs, 2(2), 22-35.

Trivedi, D., Rahn, C. D., Kier, W. M., and Walker, I. D. (2008). Soft robotics: Biological inspiration, state of the art, and future research. Applied bionics and biomechanics, 5(3), 99-117.

Truby, R. L., Katzschmann, R. K., Lewis, J. A., and Rus, D. (2019, April). Soft robotic fingers with embedded ionogel sensors and discrete actuation modes for somatosensitive manipulation. In 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft). IEEE, 322-329.

Vasudha, N., and Rao, K. U. (2020, December). Shape memory alloy properties, modelling aspects and potential applications-a review. In Journal of Physics: Conference Series, IOP Publishing, 1706(1), 012190.

Wang, R., Shen, Y., Qian, D., Sun, J., Zhou, X., Wang, W., and Liu, Z. (2020). Tensile and torsional elastomer fiber artificial muscle by entropic elasticity with thermo-piezoresistive sensing of strain and rotation by a single electric signal. Materials Horizons, 7(12), 3305-3315.

Wang, W., and Ahn, S. H. (2017). Shape memory alloy-based soft gripper with variable stiffness for compliant and effective grasping. Soft robotics, 4(4), 379-389.

Wheeler, R. W., Benafan, O., Calkins, F. T., Gao, X., Ghanbari, Z., Hommer, G., and Turner, T. L. (2019). Engineering design tools for shape memory alloy actuators: CASMART collaborative best practices and case studies. Journal of Intelligent Material Systems and Structures, 30(18-19), 2808-2830.

Winters, J. M. (1990). Hill-based muscle models: systems engineering perspective. In Multiple Muscle Springer, New York, NY, 69-93.

Wright, C., and Bilgen, O. (2016, September). Analysis and Design of a Shape Memory Alloy Actuated Arm to Replicate Human Biomechanics. In Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 50480, V001T04A002.

Wu, L., de Andrade, M. J., Rome, R. S., Haines, C., Lima, M. D., Baughman, R. H., and Tadesse, Y. (2015, April). Nylon-muscle-actuated robotic finger. In Active and Passive Smart Structures and Integrated Systems. International Society for Optics and Photonics, 9431, 94310I).

Wu, L., de Andrade, M. J., Saharan, L. K., Rome, R. S., Baughman, R. H., and Tadesse, Y. (2017). Compact and low-cost humanoid hand powered by nylon artificial muscles. Bioinspiration and Biomimetics, 12(2), 026004.

Xiang, C., Guo, J., Chen, Y., Hao, L., and Davis, S. (2018). Development of a SMA-fishing-line-McKibben bending actuator. IEEE Access, 6, 27183-27189.

Yin, H., Tian, L., and Yang, G. (2020). Design of fibre array muscle for soft finger with variable stiffness based on nylon and shape memory alloy. Advanced Robotics, 34(9), 599-609.

Yip, M. C., and Niemeyer, G. (2015, May). High-performance robotic muscles from conductive nylon sewing thread. In 2015 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2313-2318.

Yip, M. C., and Niemeyer, G. (2017). On the control and properties of supercoiled polymer artificial muscles. IEEE Transactions on Robotics, 33(3), 689-699.

Yoder, Z., Kellaris, N., Chase-Markopoulou, C., Ricken, D., Mitchell, S. K., Emmett, M. B., and Keplinger, C. (2020). Design of a high-speed prosthetic finger driven by peano-hasel actuators. Frontiers in Robotics and AI, 7(2020), 181.

You, Z., Liu, F., and Hou, T. (2020). A novel soft gripper based on improved liquid crystal elastomer actuator. AIP Advances, 10(10), 105222.

Zajac, F. E. (1989). Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Critical reviews in Biomedical Engineering, 17(4), 359-411.



  • There are currently no refbacks.

Copyright (c) 2021 Indonesian Journal of Science and Technology

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Science and Technology is published by UPI.
StatCounter - Free Web Tracker and Counter
View My Stats