Photodecomposition Profile of Organic Material during the Partial Solar Eclipse of 9 March 2016 and Its Correlation with Organic Material Concentration and Photocatalyst Amount

Asep Bayu Dani Nandiyanto, Desri Sofiani, Novie Permatasari, Tranmissia Noviska Sucahya, Ani Siti Wiryani, Annisa Purnamasari, Arvina Rusli, Eka Cahya Prima


The present study investigated the photodecomposition of an organic material during the partial (88.76%) solar eclipse phenomenon of 9 March 2016 in Bandung, Indonesia. Curcumin and anatase titanium dioxide (TiO2) particles were used as models of organic material and photocatalyst, respectively. The influence of the process parameters (i.e., curcumin concentration and the amount of TiO2) on the photodecomposition process was also investigated. The results showed that the curcumin was decomposed along with the solar light irradiation time. During the solar eclipse, the photodecomposition rate is suddenly down. The partial solar eclipse provided a slower photodecomposition process than the process under sunny days (conducted on 8 and 10 March 2016). The concentration of curcumin and the amount of TiO2 also have played an important role in the photodecomposition, in which the lower concentration of curcumin and the higher amount of TiO2 have a correlation to the obtainment of higher photodecomposition rate.


Curcumin; Organic material; Titania; Light intensity

Full Text:



Abram, J. P., D. J. Creasey, D. E. Heard, J. D. Lee and M. J. Pilling (2000). Hydroxyl radical and ozone measurements in England during the solar eclipse of 11 August 1999. Geophysical research letters, 27(21), 3437-3440.

Altadill, D., J. Sole and E. Apostolov (2001). Vertical structure of a gravity wave like oscillation in the ionosphere generated by the solar eclipse of August 11, 1999. Journal of geophysical research: Space physics, 106(A10), 21419-21428.

Arutanti, O., A. B. D. Nandiyanto, T. Ogi, F. Iskandar, T. O. Kim and K. Okuyama (2014). Synthesis of composite WO3/TiO2 nanoparticles by flame-assisted spray pyrolysis and their photocatalytic activity. Journal of alloys and compounds, 591, 121-126.

Arutanti, O., A. B. D. Nandiyanto, T. Ogi, T. O. Kim and K. Okuyama (2015). Influences of Porous Structurization and Pt Addition on the Improvement of Photocatalytic Performance of WO3 Particles. ACS applied materials and interfaces, 7(5), 3009-3017.

Bojkov, R. D. (1968). The ozone variations during the solar eclipse of 20 May 1966. Tellus, 20(3), 417-421.

Bonsnes, R. W. and H. H. Taussky (1945). On the colorimetric determination of creatinine by the Jaffe reaction. Journal of biological chemistry, 158(3), 581-591.

Buddee, S., S. Wongnawa, P. Sriprang and C. Sriwong (2014). Curcumin-sensitized TiO2 for enhanced photodegradation of dyes under visible light. Journal of nanoparticle research, 16(4), 1-21.

Byrappa, K., A. Subramani, S. Ananda, K. L. Rai, R. Dinesh and M. Yoshimura (2006). Photocatalytic degradation of rhodamine B dye using hydrothermally synthesized ZnO. Bulletin of materials science, 29(5), 433-438.

Chudzyński, S., A. Czyżewski, K. Ernst, A. Pietruczuk, W. Skubiszak, T. Stacewicz, K. Stelmaszczyk, A. Szymański, I. Sowka and A. Zwoździak (2001). Observation of ozone concentration during the solar eclipse. Atmospheric research, 57(1), 43-49.

Devipriya, S. and S. Yesodharan (2005). Photocatalytic degradation of pesticide contaminants in water. Solar energy materials and solar cells, 86(3), 309-348.

dos Santos, T. C., G. J. Zocolo, D. A. Morales, G. de Aragão Umbuzeiro and M. V. B. Zanoni (2014). Assessment of the breakdown products of solar/UV induced photolytic degradation of food dye tartrazine. Food and chemical toxicology, 68, 307-315.

Eastman, J. A. and D. H. Stedman (1980). Variations in the ambient ozone concentration during the 26 February 1979 solar eclipse. Atmospheric environment, 14(6), 731-732.

Eskizeybek, V., F. Sarı, H. Gülce, A. Gülce and A. Avcı (2012). Preparation of the new polyaniline/ZnO nanocomposite and its photocatalytic activity for degradation of methylene blue and malachite green dyes under UV and natural Sun lights irradiations. Applied catalysis B: Environmental, 119, 197-206.

Fabian, P., M. Winterhalter, B. Rappenglück, H. Reitmayer, A. Stohl, P. Koepke, H. Schlager, H. Berresheim, T. Foken and B. Wichura (2001). The BAYSOFI Campaign–Measurements carried out during the total solar eclipse of August 11, 1999. Meteorologische zeitschrift, 10(3), 165-170.

Foken, T., B. Wichura, O. Klemm, J. Gerchau, M. Winterhalter and T. Weidinger (2001). Micrometeorological measurements during the total solar eclipse of August 11, 1999. Meteorologische zeitschrift, 10(3), 171-178.

Founda, D., D. Melas, S. Lykoudis, I. Lisaridis, E. Gerasopoulos, G. Kouvarakis, M. Petrakis and C. Zerefos (2007). The effect of the total solar eclipse of 29 March 2006 on meteorological variables in Greece. Atmospheric chemistry and physics, 7(21), 5543-5553.

Hunt, B. (1965). A theoretical study of the changes occurring in the ozonosphere during a total eclipse of the Sun. Tellus, 17(4), 516-523.

Iskandar, F., A. B. D. Nandiyanto, K. M. Yun, C. J. Hogan, K. Okuyama and P. Biswas (2007). Enhanced photocatalytic performance of brookite TiO2 macroporous particles prepared by spray drying with colloidal templating. Advanced materials, 19(10), 1408-1412.

Kimball, H. H. (1924). Records of Total Solar Radiation Intensity and Their Relation to Daylight Intensity. Monthly weather review, 52(10), 473-478.

Koepke, P., J. Reuder and J. Schween (2001). Spectral variation of the solar radiation during an eclipse. Meteorologische Zeitschrift, 10(3), 179-186.

Kormann, C., D. Bahnemann and M. R. Hoffmann (1991). Photolysis of chloroform and other organic molecules in aqueous titanium dioxide suspensions. Environmental science and technology, 25(3), 494-500.

Kumavat, S. D., Y. S. Chaudhari, P. Borole, P. Mishra, K. Shenghani and P. Duvvuri (2013). Degradation studies of curcumin. International journal of pharmacy review research, 3(2), 50-55.

Libra, M., P. Kouřím and V. Poulek (2016). Behavior of Photovoltaic System during Solar Eclipse in Prague. International journal of photoenergy, 2016, 1-6.

Liu, J., H. Tsai, L.-C. Tsai and M. Chen (1999). Ionospheric total electron content observed during the 24 October 1995 solar eclipse. Advances in space research, 24(11), 1495-1498.

Matthews, R. W. (1991). Photooxidative degradation of coloured organics in water using supported catalysts. TiO2 on sand. Water research, 25(10), 1169-1176.

Mills, A., R. H. Davies and D. Worsley (1993). Water purification by semiconductor photocatalysis. Chemical society review, 22(6), 417-425.

Nandiyanto, A. B. D., F. Iskandar and K. Okuyama (2009). Macroporous anatase titania particle: Aerosol self-assembly fabrication with photocatalytic performance. Chemical engineering journal, 152(1), 293-296.

Nandiyanto, A. B. D., O. Arutanti, T. Ogi, F. Iskandar, T. O. Kim and K. Okuyama (2013). Synthesis of spherical macroporous WO3 particles and their high photocatalytic performance. Chemical engineering science, 101, 523-532.

Nandiyanto, A. B. D., Munawaroh, H. S. H., Kurniawan, T., & Mudzakir, A. (2016). Influences of Temperature on the Conversion of Ammonium Tungstate Pentahydrate to Tungsten Oxide Particles with Controllable Sizes, Crystallinities, and Physical Properties. Indonesian Journal of Chemistry, 16(2), 124-129.

Nishanth, T., N. Ojha, M. S. Kumar and M. Naja (2011). Influence of solar eclipse of 15 January 2010 on surface ozone. Atmospheric environment, 45(9), 1752-1758.

Özcan, O. and M. Aydoǧdu (2004). Possible effects of the total solar eclipse of August 11, 1999 on the geomagnetic field variations over Elaziǧ-Turkey. Journal of atmospheric and solar-terrestrial physics, 66(11), 997-1000.

Sakthivel, S., B. Neppolian, M. Shankar, B. Arabindoo, M. Palanichamy and V. Murugesan (2003). Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2. Solar energy materials and solar cells, 77(1), 65-82.

Šauli, P., P. Abry, J. Boška and L. Duchayne (2006). Wavelet characterisation of ionospheric acoustic and gravity waves occurring during the solar eclipse of August 11, 1999. Journal of atmospheric and solar-terrestrial physics, 68(3), 586-598.

Sharma, S., T. Mandal, B. Arya, M. Saxena, D. Shukla, A. Mukherjee, R. Bhatnagar, S. Nath, S. Yadav and R. Gautam (2010). Effects of the solar eclipse on 15 January 2010 on the surface O3, NO, NO2, NH3, CO mixing ratio and the meteorological parameters at Thiruvanathapuram, India. Annales geophysicae, 28, 1199-1205.

Sobana, N. and M. Swaminathan (2007). The effect of operational parameters on the photocatalytic degradation of acid red 18 by ZnO. Separation and purification technology, 56(1), 101-107.

Sogi, D. S., S. Sharma, D. P. S. Oberoi and I. Wani (2010). Effect of extraction parameters on curcumin yield from turmeric. Journal of food science and technology, 47(3), 300-304.

Sucahya, T.N., Permatasari, N. and Nandiyanto, A.B.D., 2016. Review: Fotokatalis untuk pengolahan limbah cair. Jurnal integrasi proses, 6(2), 1-15.

Sun, J., L. Qiao, S. Sun and G. Wang (2008). Photocatalytic degradation of Orange G on nitrogen-doped TiO2 catalysts under visible light and sunlight irradiation. Journal of hazardous materials, 155(1), 312-319.

Tiwari, N. K. (2015). Eclipse. International journal of sanskrit research, 1(3), 38-40.

Tzanis, C., C. Varotsos and L. Viras (2008). Impacts of the solar eclipse of 29 March 2006 on the surface ozone concentration, the solar ultraviolet radiation and the meteorological parameters at Athens, Greece. Atmospheric chemistry and physics, 8(2), 425-430.

Zebib, B., Z. Mouloungui and V. Noirot (2010). Stabilization of curcumin by complexation with divalent cations in glycerol/water system. Bioinorganic chemistry and applications, 2010, 1-8.

Zerefos, C., D. Balis, P. Zanis, C. Meleti, A. Bais, K. Tourpali, D. Melas, I. Ziomas, E. Galani and K. Kourtidis (2001). Changes in surface UV solar irradiance and ozone over the Balkans during the eclipse of August 11, 1999. Advances in space research, 27(12), 1955-1963.

Zhu, H.-Y., J. Yao, R. Jiang, Y.-Q. Fu, Y.-H. Wu and G.-M. Zeng (2014). Enhanced decolorization of azo dye solution by cadmium sulfide/multi-walled carbon nanotubes/polymer composite in combination with hydrogen peroxide under simulated solar light irradiation. Ceramics international, 40(2), 3769-3777.



  • There are currently no refbacks.

Copyright (c) 2016 Indonesian Journal of Science and Technology

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Science and Technology is published by UPI.
StatCounter - Free Web Tracker and Counter
View My Stats