Crosslinked Spin-Assisted Layer-by-Layer Polyelectrolyte Nanofiltration Membrane: From Literature Review to Experiment

Farid Fadhillah

Abstract


Layer-by-Layer (LbL) assembly is considered as the most versatile and robust method in thin-film fabrication. However, its use in the preparation of desalination membrane is still in its infancy. Spin-assisted layer-by-layer assembly (SA-LbL), one of the LbL variants, was selected for the fabrication of a nanofiltration membrane due to its versatility to produce an ultra-thin film with highly controlled film properties within an incredibly short time. Branched-polyethyleneimine (PEI) and poly(sodium 4-styrenesulfonate) (PSS) were employed and alternately deposited on the top of the ultrafiltration polyethersulfone (PES) substrate. PEI/PSS film was then crosslinked using Gluteraldehyd (GA). The resulting membrane was tested at a feed concentration of 2000 ppm NaCl, a pressure of 10 bar, and a temperature of 25°C. Crosslinking time and many layers were varied to investigate the extent of crosslinking and its impact on membrane performance. The permeation test of (PEI/PSS)10 crosslinked for 6 hours showed rejection of 94.2 % and water flux of 4.2 L/h·m2 meanwhile uncrosslinked (PEI/PSS)35 showed rejection of 75.66% only. The result showed that crosslinking improved the rejection of NaCl with a smaller number of layers. This result also displayed SA-LbL method is promising and can be used to produce membrane suitable for NF or RO application.

Keywords


Desalination; Layer by layer; Nanofiltration; Polyelectrolyte; Reverse osmosis; Spin coating

Full Text:

PDF

References


Ahmadipouya, S., Mousavi, S. A., Shokrgozar, A., and Mousavi, D. V. (2022). Improving dye removal and antifouling performance of polysulfone nanofiltration membranes by incorporation of uio-66 metal-organic framework. Journal of Environmental Chemical Engineering, 10(3), 107535.

Alghamdi, A. M. (2021). Fast and versatile pathway in fabrication of polyelectrolyte multilayer nanofiltration membrane with tunable properties. Journal of Chemistry, 2021, 1-6.

Alghamdi, A., and Fadhillah, F. (2020). Thin film composite polyelectrolyte multilayer nanofiltration membrane fabricated using spin assisted layer by layer assembly: Application of solution diffusion film model. Communications in Science and Technology, 5(1), 10-15.

Barro, L., Delila, L., Nebie, O., Wu, Y. W., Knutson, F., Watanabe, N., Takahara, M., and Burnouf, T. (2021). Removal of minute virus of mice-mock virus particles by nanofiltration of culture growth medium supplemented with 10% human platelet lysate. Cytotherapy, 23(10), 902-907.

Chiarelli, P. A., Johal, M. S., Casson, J. L., Roberts, J. B., Robinson, J. M., and Wang, H. L. (2001). Controlled fabrication of polyelectrolyte multilayer thin films using spin‐assembly. Advanced Materials, 13(15), 1167-1171.

Cho, J., Char, K., Hong, J. D., and Lee, K. B. (2001). Fabrication of highly ordered multilayer films using a spin self‐assembly method. Advanced Materials, 13(14), 1076-1078.

Cho, K. L., Hill, A. J., Caruso, F., and Kentish, S. E. (2015). Chlorine resistant glutaraldehyde crosslinked polyelectrolyte multilayer membranes for desalination. Advanced Materials, 27(17), 2791-2796.

Decher, G. (1996). Layered nanoarchitectures via directed assembly of anionic and cationic molecules. Comprehensive Supramolecular Chemistry, 9, 507-528.

Decher, G., and Schmitt, J. (1992). Fine-tuning of the film thickness of ultrathin multilayer films composed of consecutively alternating layers of anionic and cationic polyelectrolytes. Trends in Colloid and Interface Science VI, 89, 160-164

Dubas, S. T., and Schlenoff, J. B. (2001). Swelling and smoothing of polyelectrolyte multilayers by salt. Langmuir, 17(25), 7725-7727.

Fadhillah, F., Alghamdi, A. M., Alsubei, M. D., and Aljlil, S. A. (2021). Synthesis of protein-fouling-resistance polyelectrolyte multilayered nanofiltration membranes through spin-assisted layer-by-layer assembly. Journal of King Saud University-Engineering Sciences, 33(2), 81-87.

Fadhillah, F., Javaid Zaidi, S. M., Khan, Z., Khaled, M., and Hammond, P. T. (2011). Reverse osmosis desalination membrane formed from weak polyelectrolytes by spin assisted layer by layer technique. Desalination and Water Treatment, 34(1-3), 44-49.

Gu, J. E., Lee, J. S., Park, S. H., Kim, I. T., Chan, E. P., Kwon, Y. N., and Lee, J. H. (2015). Tailoring interlayer structure of molecular layer-by-layer assembled polyamide membranes for high separation performance. Applied Surface Science, 356, 659-667.

Hu, P., Yuan, B., Niu, Q. J., Chen, K., Xu, Z., Tian, B., and Zhang, X. (2022). Modification of polyamide nanofiltration membrane with ultra-high multivalent cations rejections and mono-/divalent cation selectivity. Desalination, 527, 115553.

Jin, W., Toutianoush, A., and Tieke, B. (2003). Use of polyelectrolyte layer-by-layer assemblies as nanofiltration and reverse osmosis membranes. Langmuir, 19(7), 2550-2553.

Kamp, J., Emonds, S., Seidenfaden, M., Papenheim, P., Kryschewski, M., Rubner, J., and Wessling, M. (2021). Tuning the excess charge and inverting the salt rejection hierarchy of polyelectrolyte multilayer membranes. Journal of Membrane Science, 639, 119636.

Kim, K. S., Lee, K. H., Cho, K., and Park, C. E. (2002). Surface modification of polysulfone ultrafiltration membrane by oxygen plasma treatment. Journal of Membrane Science, 199(1-2), 135-145.

Krasemann, L., and Tieke, B. (2000). Selective ion transport across self-assembled alternating multilayers of cationic and anionic polyelectrolytes. Langmuir, 16(2), 287-290.

Lajimi, R. H., Abdallah, A. B., Ferjani, E., Roudesli, M. S., and Deratani, A. (2004). Change of the performance properties of nanofiltration cellulose acetate membranes by surface adsorption of polyelectrolyte multilayers. Desalination, 163(1-3), 193-202.

Lau, W. J., and Ismail, A. F. (2009). Polymeric nanofiltration membranes for textile dye wastewater treatment: preparation, performance evaluation, transport modelling, and fouling control—a review. Desalination, 245(1-3), 321-348.

Lee, K. P., Arnot, T. C., and Mattia, D. (2011). A review of reverse osmosis membrane materials for desalination—Development to date and future potential. Journal of Membrane Science, 370(1-2), 1-22.

Li, P., Lan, H., Chen, K., Ma, X., Wei, B., Wang, M., Li, P., Hou, Y., and Niu, Q. J. (2022). Novel high-flux positively charged aliphatic polyamide nanofiltration membrane for selective removal of heavy metals. Separation and Purification Technology, 280, 119949.

Liang, Y., and Lin, S. (2020). Mechanism of Permselectivity Enhancement in Polyelectrolyte-Dense Nanofiltration Membranes via Surfactant-Assembly Intercalation. Environmental Science and Technology, 55(1), 738-748.

Oatley-Radcliffe, D. L., Walters, M., Ainscough, T. J., Williams, P. M., Mohammad, A. W., and Hilal, N. (2017). Nanofiltration membranes and processes: A review of research trends over the past decade. Journal of Water Process Engineering, 19, 164-171.

Petersen, R. J. (1993). Composite reverse osmosis and nanofiltration membranes. Journal of Membrane Science, 83(1), 81-150.

Qiao, K., Liu, H., and Hu, N. (2008). Layer-by-layer assembly of myoglobin and nonionic poly (ethylene glycol) through ion–dipole interaction: An electrochemical study. Electrochimica Acta, 53(14), 4654-4662.

Rajabzadeh, S., Liu, C., Shi, L., and Wang, R. (2014). Preparation of low-pressure water softening hollow fiber membranes by polyelectrolyte deposition with two bilayers. Desalination, 344, 64-70.

Razon, B. C. (2020). COVID-19: Impetus for “community spirits” among Filipinos. Indonesian Journal of Science and Technology, 5(2), 26-33.

Richardson, J. J. (2015). Bj rnmalm m, caruso f. Technology-driven layer-by-layer assembly of nanofilms. Science, 348(6233), 2491.

Ritcharoen, W., Supaphol, P., and Pavasant, P. (2008). Development of polyelectrolyte multilayer-coated electrospun cellulose acetate fiber mat as composite membranes. European Polymer Journal, 44(12), 3963-3968.

Schlenoff, J. B., Dubas, S. T., and Farhat, T. (2000). Sprayed polyelectrolyte multilayers. Langmuir, 16(26), 9968-9969.

Schmitt, J., Gruenewald, T., Decher, G., Pershan, P. S., Kjaer, K., and Loesche, M. (1993). Internal structure of layer-by-layer adsorbed polyelectrolyte films: a neutron and X-ray reflectivity study. Macromolecules, 26(25), 7058-7063.

Shannon, M. A., Bohn, P. W., Elimelech, M., Georgiadis, J. G., Marinas, B. J., and Mayes, A. M. (2008). Science and technology for water purification in the coming decades. Nature, 452(7185), 301–310.

Touir, J., Kitanou, S., Zait, M., Belhamidi, S., Belfaquir, M., Tahaikt, M., .Taky and Elmidaoui, A. (2021). The comparison of electrodialysis and nanofiltration in nitrate removal from groundwater. Indonesian Journal of Science and Technology, 6(1), 17-30.

Wang, S., Xiao, K., Mo, Y., Yang, B., Vincent, T., Faur, C., and Guibal, E. (2020). Selenium (VI) and copper (II) adsorption using polyethyleneimine-based resins: Effect of glutaraldehyde crosslinking and storage condition. Journal of Hazardous Materials, 386, 121637.

Wang, S., Yang, L., Wang, Q., Fan, Y., Shang, J., Qiu, S., and Wu, X. (2018). Supramolecular self-assembly of layer-by-layer graphene film driven by the synergism of π–π and hydrogen bonding interaction. Journal of Photochemistry and Photobiology A: Chemistry, 355, 249-255.

Wu, C., Zhao, L., and Zhang, Y. (2017). pH-Responsive nanofiltration membranes based on porphyrin supramolecular self-assembly by layer-by-layer technique. RSC Advances, 7(75), 47397-47406.

Yacouba, Z. A., Mendret, J., Lesage, G., Zaviska, F., and Brosillon, S. (2021). Removal of organic micropollutants from domestic wastewater: The effect of ozone-based advanced oxidation process on nanofiltration. Journal of Water Process Engineering, 39, 101869.

Yoo, J. E., Lee, K. S., Garcia, A., Tarver, J., Gomez, E. D., Baldwin, K., Sun, Y., Meng, H., Nguyen, T. Q., and Loo, Y. L. (2010). Directly patternable, highly conducting polymers for broad applications in organic electronics. Proceedings of the National Academy of Sciences, 107(13), 5712-5717.

Zhang, D., Lu, J., Shi, C., Zhang, K., Li, J., and Gao, L. (2021). Anti-corrosion performance of covalent layer-by-layer assembled films via click chemistry reaction on the copper surface. Corrosion Science, 178, 109063.




DOI: https://doi.org/10.17509/ijost.v7i1.45181

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Universitas Pendidikan Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Science and Technology is published by UPI.
StatCounter - Free Web Tracker and Counter
View My Stats