Literature Review and Experiment: Diversity of Bacteria in Forest, Revegetated Post-Mining Land, and Active Tin Mining with A Metagenomic Approach

Eka Sari, Andhika Puspito Nugroho, Endah Retnaningrum, Irfan Dwidya Prijambada

Abstract


The objective of this study was to investigate the diversity of bacteria in the rhizosphere of Acacia grow in the forest and different ages of revegetated land and non-rhizospheric bacteria from active tin mining soil on Bangka Island with a metagenomic approach and to investigate its relationship with physicochemical properties of the soil and its metal content. 17 species/genera were found in the four fields, and Bradyrhizobium is the dominant genus. Bacterial communities of the forest (more than 5 years in revegetated post-tin mining land containing C, N, P, and Fe) are Paraburkholderia sp., Bacillus sp., Candidatus-Xiphinematobacter, and Bacterium enrichment. The physicochemical properties of soil from less than 5 years of revegetated contain Cu, Cr, and Mo, and the dominant species in this soil were Bulkhorderia sp., Bacillus lehensis, B. fordii, B. thermolactis, Chloroflexi bacterium, and Thermonosporaceae bacterium. The physicochemical properties of soil from the mining were dominated by Cd and Ni, and the dominant species in this soil were Sinomonas atrocyanea.

Keywords


Bacterial diversity; Bangka; Metagenome; Metals; Tin mine revegetation

Full Text:

PDF

References


Abdullahi, S., Haris, H., Zarkasi, K., Z., and Amir, H., G. (2021). Indigenous bacterial community of heavy metal tolerance in the rhizosphere soils of Mimosa pudica naturally growing on an ex-tin mining area. Malaysian Journal of Microbiology, 17(6), 690-700.

Agnol, R.F.D., Plotegher, F., Souza, R.C., Mendes, J.C., Junior, F.B.D.R., Bena, G., Moulin, L., and Hungria, M. (2016). Paraburkholderia nodosa is the main N2-fixing Species Trapped by Promiscuous Common Bean (Phaseolus vulgaris L.) in The Brazilian “Cerradao”. FEMS Microbiology Ecology, 92(8), 1-14.

Akhtar, N., Ilyas, N., Yasmin, H., Sayyed, R. Z., Hasnain, Z. A., Elsayed, E., and El Enshasy, H. A. (2021). Role of Bacillus cereus in improving the growth and phytoextractability of Brassica nigra (L.) K. Koch in chromium contaminated soil. Molecules, 26(1569), 1-20.

Ali, H., Khan, E., and Ilahi, I. (2019). Review article environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. Journal of Chemistry, 2019,1-14.

Aminah, U., and Nur, F. (2018). Biosorption of heavy metal lead (Pb) by Bacteria. Jurnal Teknosains, 12(1), 50-70.

An Coorevits, Logan, N.A., Dinsdale, A.E., Halket, G., Scheldeman, P., Heyndrickx, M., Schumann, P., Van Landschoot, A., and De Vos, P. (2011). Bacillus thermolactis sp. nov. isolated from dairy farms, and emended description of Bacillus thermoamylovorans. International Journal of Systematic and Evolutionary Microbiology, 61(2011), 1954-1961.

Andjelkovic, K.M., Djordjevic, A.B., Antonijevic, E., Antonijevic, A., Stanic, M., Koturstevuljevic, J., Kalimanovska, V.S., Jovanovic, M., Boricic, N., Wallace, D., and Bulat, Z. (2019). Toxic effect of acute cadmium and lead exposure in rat blood, liver, and kidney. International Journal of Environmental Research and Public Health, 16, 1-21.

Ang, L.H., Tang, L.K., Ho, W.H., Hui, T.F., and Theseira, G.W. (2010). Phytoremediation of Cd and Pb by four tropical timber species grown on an ex-tin mine in peninsular Malaysia. World Academy of Science, Engineering and Technology, 62, 244-248.

Anyanwu, O.B., Ezejiofor, A.N., Igweze, Z.N., and Orisakwe, O.E. (2018). Review heavy metal mixture exposure and effects in developing nations: An update. Toxics, 6(65), 1-32.

Baghaie, A.H., Fereydoni, M. (2019). The potential risk of heavy metals on human health due to the daily consumption of vegetables. Environmental Health Engineering and Management Journal, 6(1), 11–16.

Batool, R., ur Rehman, S., Rafique, M., Amna, Ali, J., Mukhtar, T., Mahmood, S., Sultan, T., Munis, F.H., and Chaudhary, H.J. (2019). Biocontrol potential of Bacillus gibsonii and Brevibacterium frigoritolerans in suppression of fusarium stalks rot of maize: A sustainable approach. Asian Journal of Agriculture and Biology, 7(3), 320-333.

Bellés-Sancho, P., Lardi, M., Liu, Y., Hug, S., Pinto-Carbó, M. A., Zamboni, N., and Pessi, G. (2021). Paraburkholderia phymatum homocitrate synthase NifV plays a key role for nitrogenase activity during symbiosis with papilionoids and in free-living growth conditions. Cells, 10(4), 1-20.

Bibi, F., Chung, E.J., Jeon, C.O., and Chung, Y.R. (2011). Bacillus graminis sp. nov., endophyte isolated from a coastal dune plant. International Journal of Systematic and Evolutionary Microbiology, 61(2011), 1567-1571.

Bisker, C., Taylor, G., Corney, and Relebitso-Senior, T.K. (2021). A combined application of molecular microbial ecology and elemental anlysis can advance the understanding of decomposition dinamics. Frontiers in Ecology and Evolution, 9, 605817.

Chiou, Y. H., Wong, R. H., Chao, M. R., Chen, C. Y., Liou, S. H., and Lee, H. (2014). Nickel accumulation in lung tissues is associated with increased risk of p53 mutation in lung cancer patients. Environmental and Molecular Mutagenesis, 55(8), 624-632.

Costa, P.,H.,d.,O., Nascimento, S.,V.,d., Herrera, H., Gastauer, M., Ramos, S.,J., Caldeira, C.,F., Oliveira, G., and Valadares, R.,B.,d.,S. (2021). Non-specific interactions of rhizospheric microbial communities support the establishment of Mimosa acutistipula var. ferrea in an amazon rehabilitating mineland. Processes, 9(2079), 1-14.

Damo, J.L.L., Ramirez, M.D.A., Agake, S.I., Pedro, M., Brown, M., Sekimoto, H., Yokoyama, T., Sugihara, S., Okazaki, S., and Ohkama-Ohitsu, N. (2022). Isolation and characterisation of phosphate solubilizing bacteria from paddy field soils in Japan. Microbes Environ, 37(2), 1-15.

De Mandal, S., Chatterje, R., and Kumar, N.S. (2017). Dominant bacterial phyla in caves and their predicted functional roles in C and N cycle. BMC Microbiolog, 17(90), 1-9.

Deng, C., Zhang, N., Liang, X., Huang, T., and Li, B. Bacillus aryabhattai LAD impacts rhizosphere bacterial community structure and promotes maize plant growth. Journal of the Science of Food and Agriculture, 102(14), 6650-6657.

Ellermann, M., Carr, J. S., Fodor, A. A., Arthur, J. C., and Carroll, I. M. (2017). Characterizing and functionally defining the gut microbiota: methodology and implications. The Microbiota in Gastrointestinal Pathophysiology, 2017,15-25.

Geng, H., Wang, F., Yan, C., Ma, S., Zhang, Y., Qin, Q., Tian, Z., Liu, R., Chen, H., Zhou, B., and Yuan, R. (2022). Rhizosphere microbial community composition and survival strategies in oligotrophic and metal(loid) contaminated iron tailings areas. Journal of Hazardous Materials, 436, 1-12.

Gosh, R., Barman, S., Mukherjee, R., and Mandal, N.C. (2016). Role of phosphate solubilizing burkholderia spp. for succesfull colonization and growth promotion of lycopodium cernuum l. (lycopodiaceae) in lateritic belt of birbhum district of West Bengal, India. Microbiological Research, 183(2016), 80-91.

Guerrero-Cebalos, D.L., Pinta-Melo, J., Fernandes-Izquierdo, P., Ibarguen-Mondragon, E., and Burbano-Rosero, E.M. (2021). Molecular techniques for the assessment of Cr (IV) reduction by Bacillus thuringiensis. Universitas Scientiarrum, 26(2), 243-259.

Guo, D., Fan, Z., Lu, S., Ma, Y., Nie, X., Tong, F., and Peng, X. (2019). Changes in rhizosphere bacterial communities during remediation of heavy metal-accumulating plants around the Xikuangshan mine in southern China. Scientific Reports, 9(1947),1-11.

Hansda, A., Kumar, V., and Ansumali. (2017). Cu-resistant Kocuria sp. CRB15: a potential PGPR isolated from the dry tailing of Rakha copper mine. Biotech, 7(132), 1-11.

Hayat, R., Khalid, R., Ehsan, M., Ahmed, I., Yokota, A., and Ali, S. (2013). Molecular characterization of soil bacteria for improving crop yield in Pakistan. Pakistan Journal of Botany, 45(3), 1045-1055.

Huang, H., Zhao, Y., Xu, Z., Ding, Y., Zhou, X., and Dong, M. (2020). A high Mn (II)-tolerance strain, Bacillus thuringiensis HM7, isolated from manganese ore and its biosorption characteristics. PeerJ, 8, e8589.

Igiri, B. E., Okoduwa, S. I., Idoko, G. O., Akabuogu, E. P., Adeyi, A. O., and Ejiogu, I. K. (2018). Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: A review. Journal of Toxicology, 2018, 1687-8191.

Irzon, R., Syafri, I., Hutabarat, J., Sendjaja, P., and Permanadewi, S. (2018). Heavy metals content and pollution in tin tailings from Singkep Island, Riau, Indonesia (kandungan logam berat dan pencemaran di lombong timah dari Pulau Singkep, Riau, Indonesia), Sains Malaysiana, 47(11), 2609–2616.

Jach, M. E., Sajnaga, E., and Ziaja, M. (2022). Utilization of legume-nodule bacterial symbiosis in phytoremediation of heavy metal-contaminated soils. Biology, 11(5), 1-34.

Jarosławiecka, A. K., and Piotrowska-Seget, Z. (2022). The effect of heavy metals on microbial communities in industrial soil in the area of Piekary Śląskie and Bukowno (Poland). Microbiology Research, 13(3), 626-642.

Jeannne, B.D.A., Faustin, A.O., Thierry, G., Edith, K.S.A.A., Fatou, N., and Diegane, D. (2019). Enhancement of phytoremediation efficiency of acacia mangium using earthwormin metal-contaminated soil in bonour, ivory coast. African Journal of Biotechnology, 18(27), 622-631.

Jiang, B., Adebayoc, A., Jia, J., Xing, Y., Denge, S., Guoe, L., Liang, Y., and Zhang, D. (2019). Impacts of heavy metals and soil properties at a Nigerian e-waste site on soil microbial community. Journal of Hazardous Materials, 362(2019), 187–195.

Jiang, X., Guo, Y., Li, H., Li, X., and Liu, J. (2022). Ecological evolution during the three-year restoration using rhizosphere soil cover method at a Lead-Zinc tailing pond in Karst areas. Science of the Total Environment, 853(2022), 1-13.

Jin, Y., Luan, Y., Ning, Y., and Wang, L. (2018). Effects and mechanisms of microbial remediation of heavy metals in soil: A critical review. Applied Sciences, 8(1336), 1-17.

Kalu, C. M., Ogola, H. J. O., Selvarajan, R., Tekere, M., and Ntushelo, K. (2022). Correlations between root metabolomics and bacterial community structures in the phragmites australis under acid mine drainage polluted wetland ecosystem. Current Microbiology, 79(34), 1-15.

Kirui, C.K., Njeru, E.M., and Runo, S. (2020). Diversity and phosphate solubilisation efficiency of phosphate solubilizing bacteria isolated from semi-arid agroecosystem of Eastern Kenya. Microbiology Insight,15, 1-12.

Knuutinen, J., Bomberg, M., Kemell, M., and Lusa, M. (2019). Ni (II) interactions in boreal Paenibacillus sp., Methylobacterium sp., Paraburkholderia sp., and Pseudomonas sp. strains isolated from an acidic, ombrotrophic bog. Frontiers in Microbiology, 10, 2677.

Koner, S., Tsai, H-C., Chen, J-S., Hussain,B., Rajendran, S., K., and Hsu, B-M. (2022). Exploration of pristine plate-tectonic plains and mining exposure areas for indigenous microbial communities and its impact on the mineral-microbial geochemical weathering process in ultramafic setting. Environmental Research, 214(2022), 1-12.

Li, X., Liu, X.,Cao, N., Fang, S., and Yu, C. (2021). Adaptation mechanisms of arsenic metabolism genes and their host microorganisms in soils with different arsenic contamination levels around abandoned gold tailings. Environmental Pollution, 291(2021), 1-10.

Li, X., Meng, D., Li, J., Yin, H., Liu, H., Liu, X., Cheng, C., Xiao, Y., Liu, Z., and Yan, M. (2017). Response of soil microbial communities and microbial interactions to long-term heavy metal contamination. Environmental Pollution, 231(2017), 908-917.

Liu, C., Li, B., Chen, X., Dong, Y., and Lin, H. (2022). Insight into soilless revegetation of oligotrophic and heavy metal contaminated gold tailing pond by metagenomic analysis. Journal of Hazardous Materials, 435(2022), 1-12.

Liu, K., Ding, X., and Wang, J. (2020). Soil metabolome correlates with bacterial diversity and co-occurrence patterns in root-associated soils on the Tibetan Plateau. Science of the Total Environment, 735(2020), 1-11.

Liu, R., Hong, J., Xu, X., Feng, Q., Zhang, D., Gu, Y., Shi, J., Zhao, S., Liu, W., Wang, X., Xia, H., Liu, Z., Cui, B., Liang, P., Xi, L., Jin, J., Ying, X., Wang, X., Zhao, X., Li, W., Jia, H., Lan, Z., Li, F., Wang, R., Sun, Y., Yang, M., Shen, Y., Jie, Z., Li, J., Chen, X., Zhong, H., Xie, H., Zhang, Y., Gu, W., Deng, X., Shen, B., Xu, X., Yang, H., Xu, G., Bi, Y., Lai, S., Wang, J., Qi, L., Madsen, L., Wang, J., Ning, G., Kristiansen, K., and Wang, W. (2017). Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nature Medicine, 23(7), 859-868.

Madhaiyan, M., Selvakumar, G., Alex, T. H., Cai, L., and Ji, L. (2021). Plant growth promoting abilities of novel burkholderia-related genera and their interactions with some economically important tree species. Frontiers in Sustainable Food Systems, 5, 618305.

Marwa, N., Mishra, N., Singh, N., Mishra, A., Saxena, G., Pandey, V., and Singh, N. (2020). Effect of rhizospheric inoculation of isolated arsenic (As) tolerant strains on growth, As-uptake and bacterial communities in association with Adiantum capillus-veneris. Ecotoxicology and Environmental Safety, 196(2020), 1-11.

Mitra, S., Pramanika, K., Ghoshb, P. K., Sorena, T., Sarkarc, A., Dyd, R. S., Pandeye, S., and Maitia, T. K. (2018). Characterization of Cd-resistant Klebsiella michiganensis MCC3089 and its potential for rice seedling growth promotion under Cd stress. Microbiological Research, 210(2018), 12–25.

Mu ̃noz-García, A., Arbeli, Z., Boyac ́a-V ́asquez, V., and Vanegas J. (2022). Metagenomic and genomic characterization of heavy metal tolerance and resistance genes in the rhizosphere microbiome of Avicennia germinans in a semi-arid mangrove forest in the tropics. Marine Pollution Bulletin, 184(2022), 1-12.

Nurtjahya, E., Setiadi, D., Guhardja, E., Muhadiono, and Setiadi, Y. (2009). Succession on tin-mined land in Bangka Island. Blumea, 54, 131-138

Ojuederie, O. B., and Babalola, O. O. (2017). Microbial and plant-assisted bioremediation of heavy metal polluted environments: A review. International Journal of Environmental Research and Public Health, 14(12), 1-24.

Orhan, F. (2016). Alleviation of salt stress by halotolerant and halophilic plant growth-promoting bacteria in wheat (Triticum aestivum). Brazilian Journal of Microbiology, 47(2016), 621-627.

Oves, M., Khan, M.S., and Zaidi, A. (2012). Biosoprtion of heavy metals by bacillus thuringiensis strain osm29 originating from industrial effluent contaminated North Indian Soil. Saudi Journal of Biological Sciences, 20(2013), 121-129.

Owusu-Darko, R., Allam, M., Ismail, A., Ferreira, C.A.S., de Oliveria, S.D., and Buys, M. (2020). Comparative genome analysis of bacillus sporothermodurans with its closest phylogenetic neighbor, bacillus oleronius, and bacillus cereus and bacillus subtilis groups. Microorganisms, 8, 1-17.

Petrillo, C., Castaldi, S., Lanzilli, M., Selci, M., Cordone, A., Giovannelli, D., and Isticato, R. (2021). Genomic and physiological characterization of Bacilli isolated from salt-pans with plant growth promoting features. Frontiers in Microbiology, 12, 1-15.

Ponce, B. R. A., Reza V’Azquez, D. M., Paredes, S. G., de Haro-Cruz, M., Hernandez, J. M., Osorio, Y. B., de Los Santos, P. E., Wang, E. T., and Murrieta, M. S. V. (2017). Plant growth-promoting traits in rhizobacteria of heavy metal-resistant plants and their effects on brassica nigra seed germination. Pedosphere, 27(3), 511–526.

Pradhan, S. K., Sahu, D. K., Singh, N. R., Kumar, U., Thatoi, H. (2022). Unveiling of metal-tolerance bacterial consortia in chromite mine by metagenomic approaches. Research Square, 2022, 1-20.

Raj, R. S. D. P., Linda, R., and Babyson, R. S. (2014). Molecular characterization of phosphate solubilizing bacteria (PSP) and plant growth promoting rhizobacetria (PGPR) from pristine soils. International Journal of Innovative Science, Engineering and Technology, 1(7), 317-324.

Ramesh, A., Sharma, S.K., Sharma, M.P., Yadav, N., and Joshi, O.P. (2014). Innoculation of zinc solubilizing bacilllus aryabhattai, strains for impoved growth, mobilization and biofortilication of zinc in soybean and wheat cultivation of zinc in soybean and wheat cultivated in vertisol of Central India. Applied Soil Ecology, 73(2014), 87-96.

Ramírez, V., Baez, A., López, P., Bustillos, R., Villalobos, M. Á., Carreño, R., Contreras, J. L., Muñoz-Rojas, J., Fuentes, L. E., Martínez, J., and Munive, J. A. (2019). Chromium hyper-tolerant bacillus sp. MH778713 assists phytoremediation of heavy metals by mesquite trees (Prosopis laevigata). Frontiers in Microbiology, 10(1833), 1-12.

Ren, X. M., Guo, S. J., Tian, W., Chen, Y., Han, H., Chen, E., Li, B.L., Li, Y.Y. and Chen, Z. J. (2019). Effects of plant growth-promoting bacteria (PGPB) inoculation on the growth, antioxidant activity, Cu uptake, and bacterial community structure of rape (Brassica napus L.) grown in Cu-contaminated agricultural soil. Frontiers in Microbiology, 10, 1455.

Renata L., Grunennvaldt, Paungfoo-Lomhienne, Truemen S. J., and Gallart M. (2020). Effect of organic and inorganic fertilizers and paraburkholderia sp. S0S3 on growth and drought respinses of the therapeutic-honey plant leptosperum polygalifolium. Rhizhosphere, 21 (2022), 10047.

Sari, E., Fiona, D.S., Hidayati, N., and Nurtjahya, E. (2017). Analysis of metal content in dominant plants in the land and under the post tin mining in South Bangka. Promine Journal, 5(2), 15-29.

Sari, E., Giyanto, and Sudadi, U. (2016a). Acacia auriculiformis and eragrostis chariis: Potential vegetation from ex-tin mining land Bangka island as phytoremediators of pb and Sn. Journal of Soil and Environmental Sciences, 18(1),1-7.

Sari, S.L.A., Pangastuti, A., Susilowati, A., Purwoko, T., Mahajoeno, E., Hidayat, W., Mardhena, I., Panuntun, F., Kurniawati, D., and Anitasari, R. (2016b). Cellulitic and hemicelluliytic bacteria from the gut of oryctes rhinoceros larvae. Biodiversitas, 17(1), 78-83.

Shao, W., Li, M., Teng, Z., Qiu, B., Huo, Y., and Zhang, K. (2019). Effects of Pb (II) and Cr (VI) Stress on Phosphate-Solubilizing Bacteria (Bacillus sp.Strain MRP-3); Oxidative Stress and Bioacuumulation Potential. International Journal of Environmental Research and Public Health, 16(2172), 1-14.

Singh, K. N., and Narzary, D. (2021). Heavy metal tolerance of bacterial isolates associated with overburden strata of an opencast coal mine of Assam (India). Environmental Science and Pollution Research, 28(44), 63111-63126.

Sun, X., Song, B., Xu, R.,Zhang, M., Gao, P., Lin, H., and Sun, W. (2021). Root-associated (rhizosphere and endosphere) microbiomes of the Miscanthus sinensis and their response to the heavy metal contamination. Journal of Environmental Sciences, 104(2021), 387-398.

Sun, X., Zhou, Y., Tan, Y., Wu, Z., Lu, P., Zhang, G., and Yu, F. (2018). Restoration with pioneer plants changes soil properties and remodels the diversity and structure of bacterial communities in rhizosphere and bulk soil of copper mine tailings in Jiangxi Province, China. Environmental Science and Pollution Research, 25, 22106–22119.

Sun, Y., Guo, J., Wei, F., Chen, X., Li, M., Li, C., Xia, S., Zhang,

G., You, W., Cong, X., Yu, T., and Wang, S. (2022). Microbial functional communities and the antibiotic resistome profile in a high-selenium ecosystem. Chemosphere, 2022, 136858.

Tarekegn, M. M., Salilih, F. Z., and Ishetu, A. I. (2020). Microbes used as a tool for bioremediation of heavy metal from the environment. CogentFood and Agriculture, 6(1), 1783174.

Teeling, H., Glockner, F., O. (2012). Current opportunities and challenges inmicrobial metagenome analysis a bioinformatic perspectiveHanno Teeling and Frank. Briefings in Bioinformatics, 13(6), 728-742.

Thomas, Gilbert, J., and Meye F. (2012). Metagenomics - a guide from sampling to data analysis. Microbial Informatics and Experimentation, 2(3), 1-12.

Tipayno, S. C., Truu, J., Samaddar, S., Truu, M., Preem, J. K., Oopkaup, K., Espenberg, M., Chatterjee, P., Kang, Y., Kim, K., and Sa, T. (2018). The bacterial community structure and functional profile in the heavy metal contaminated paddy soils, surrounding a nonferrous smelter in South Korea. Ecology and Evolution, 8(12), 6157-6168.

Trash, J. C. (2019). Culturing the uncultured: Risk versus reward. MSystems, 4(3), 1-6.

Wilhelm, R.C., DeRito, C. P., Shapleigh, J., Madsen, E.L., and Huckley, D.H. (2021). Phenolic acid-degrading paraburkholderia prime decomposition in forest. ISME Communications, 1(4), 1-12.

Woli ́nska, A., Włodarczyk, K., Ku ́zniar, A., Marzec-Grz ̨adziel, A., Jarosław Grz ̨adziel, J., Gał ̨azka, A., and Uzarowicz, L. (2020). Soil microbial community profiling and bacterial metabolic activity of technosols as an effect of soil properties following land reclamation: a case study from the abandoned iron sulphide and uranium mine in Rudki (South-Central Poland). Agronomy, 10(1795), 1-22.

Yamamura, S., Yamashita, M., Fujimoto, N., Kuroda, M., Kashiwa, M., Sei, K., Fujita, M., and Ike, M. (2003). Bacillus selenatarsenatis sp. nov. a selenate and arsenate-reducing bacterium isolated from the effluent drain of a glass-manufacturing plant. International Journal of Systematic and Evolutionary Microbiology, 57, 1060-1064.

Yin, Y., Wang, X., Hu, Y., Li, F., and Cheng, H. (2022). Soil bacterial community structure in the habitats with different levels of heavy metal pollution at an abandoned polymetallic mine. Journal of Hazardous Materials, 442, 1-15.

Zambounis, A., Osathanunkul, M., and Madesis, P. (2019). Metagenome data of bacterial diversity in pear (Pyrus communis L.) rhizospheres associated with phytophthora infection and amino acid treatment. Elsevier, 26, 1-7.

Zhang, J., Xiao, Q., and Wang, P. (2021). Phosphate-solubilizing bacterium burkholderia sp. strain N3 facilitates the regulation of gene expression and improves tomato seddling growth under cadmium stress. Ecotoxicology and Environmental Safety, 217, 112268.




DOI: https://doi.org/10.17509/ijost.v8i1.51662

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Universitas Pendidikan Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Science and Technology is published by UPI.
StatCounter - Free Web Tracker and Counter
View My Stats