Multi-Distributed Activation Energy Model for Pyrolysis of Sugarcane Bagasse: Modelling Strategy and Thermodynamic Characterization

Siti Jamilatun, Muhammad Aziz, Joko Pitoyo


The multi-distributed activation energy model (multi-DAEM) is the most effective approach for outlining the kinetics model of biomass pyrolysis. The purpose of this study is to identify the optimal number and shape of the DAEM for sugarcane bagasse pyrolysis and to discuss its thermodynamic characteristics using the combination of multi-DAEM and differential thermal analysis (DTA). The heating rate of 10, 30, and 50 °C/min was employed. The results revealed that the multi-DAEM with five pseudo components and Weibull distribution shape gave the lowest relative root mean of the squared error (RRMSE) of 0.66% and 0.41%, respectively. Kinetic and thermodynamic studies showed that the 1st and 4th pseudo components which represent lignin, have activation energy (E0) of 189.6 and 180.6 kJ/mol, and less endothermic or possibly exothermic properties. Meanwhile, the 2nd, 3rd, and 5th pseudo components which represent cellulose, hemicellulose, and moisture have activation energy (E0) of 176.1, 152.2, and 145.6 kJ/mol, respectively, and endothermic properties.


Bagasse pyrolysis; Kinetic; Multi-DAEM; TG-DTA; Thermodynamic

Full Text:



Aamer, M., Ye, G., Luo, H., Liu, C., Malik, S., Afzal, I., Xu, J., and Sajjad, M. (2017). Bioresource technology pyrolysis and kinetic analyses of camel grass (Cymbopogon schoenanthus) for bioenergy. Bioresource Technology, 228, 18–24.

Aboyade, A. O., Hugo, T. J., Carrier, M., Meyer, E. L., Stahl, R., Knoetze, J. H., and Görgens, J. F. (2011). Non-isothermal kinetic analysis of the devolatilization of corn cobs and sugar cane bagasse in an inert atmosphere. Thermochimica Acta, 517(1–2), 81–89.

Bonilla, J., Salazar, R. P., and Mayorga, M. (2019). Kinetic triplet of Colombian sawmill wastes using thermogravimetric analysis. Heliyon, 5(10), e02723.

Burnham, A. K., and Braun, R. L. (1999). Global kinetic analysis of complex materials. Energy and Fuels, 13(1), 1-22.

Burra, K. G., and Gupta, A. K. (2018). Kinetics of synergistic e ff ects in co-pyrolysis of biomass with plastic wastes. Applied Energy, 220, 408–418.

Cai, J., and Liu, R. (2007). Weibull mixture model for modeling nonisothermal kinetics of thermally stimulated solid-state reactions: Application to simulated and real kinetic conversion data. The Journal of Physical Chemistry. B, 111, 10681–10686.

Cai, J., Wu, W., and Liu, R. (2014). An overview of distributed activation energy model and its application in the pyrolysis of lignocellulosic biomass. Renewable and Sustainable Energy Reviews, 36, 236–246.

Cai, J., Yao, F., Yi, W., and He, F. (2006). New temperature integral approximation for nonisothermal kinetics. AIChE Journal, 52(4), 1554–1557.

Dhaundiyal, A., and Singh, S. B. (2016). Distributed activation energy modelling for pyrolysis of forest waste using gaussian distribution. Proceedings of The Latvian Academy of Sciences Section B, 70(2), 64–70.

Feng, Y., Qiu, K., Zhang, Z., Li, C., Rahman, M., and Cai, J. (2022). Distributed activation energy model for lignocellulosic biomass torrefaction kinetics with combined heating program. Energy, 239, 122228.

Guedes, R. E., Luna, A. S., and Torres, A. R. (2018). Operating parameters for bio-oil production in biomass pyrolysis: A review. Journal of Analytical and Applied Pyrolysis, 129, 134–149.

Güneş, M., and Güneş, S. (1999). The influences of various parameters on the numerical solution of nonisothermal DAEM equation. Thermochimica Acta, 336(1), 93–96.

Hameed, S., Sharma, A., Pareek, V., Wu, H., and Yu, Y. (2019). A review on biomass pyrolysis models: Kinetic, network and mechanistic models. Biomass and Bioenergy, 123, 104–122.

Jamilatun, S., Budhijanto, Rochmadi, Yuliestyan, A., and Budiman, A. (2019). Valuable chemicals derived from pyrolysis liquid products of spirulina platensis residue. Indonesian Journal of Chemistry, 19(3), 703–711.

Jamilatun, S., Pitoyo, J., Amelia, S., Ma, A., Hakika, D. C., and Mufandi, I. (2022). Experimental study on the characterization of pyrolysis products from bagasse (Saccharum Officinarum L .) : Bio-oil , biochar , and gas products. Indonesian Journal of Science and Technology, 7, 565–582.

Jiang, G., Nowakowski, D. J., and Bridgwater, A. V. (2010). A systematic study of the kinetics of lignin pyrolysis. Thermochimica Acta, 498, 61–66.

Jr, M., and Grønli, M. (2003). The art, science, and technology of charcoal production. Industrial and Engineering Chemistry Research, 42, 1619–1640.

Kaczor, Z., Buliński, Z., and Werle, S. (2020). Modelling approaches to waste biomass pyrolysis: A review. Renewable Energy, 159, 427–443.

Khajehzadeh, M., Ehsani, N., Baharvandi, H. R., Abdollahi, A., Bahaaddini, M., and Tamadon, A. (2020). Thermodynamical evaluation, microstructural characterization and mechanical properties of B4C–TiB2 nanocomposite produced by in-situ reaction of Nano-TiO2. Ceramics International, 46(17), 26970–26984.

Kim, Y., Kim, Y., and Kim, S. (2010). Investigation of thermodynamic parameters in the thermal decomposition of plastic waste-waste lube oil compounds. Environmental Science and Technology, 44, 5313–5317.

Kristanto, J., Mufti, M., and Purwono, S. (2021). Heliyon Multi-distribution activation energy model on slow pyrolysis of cellulose and lignin in TGA / DSC. Heliyon, 7, e07669.

Kuo-Chao, L., Keng-Tung, W., Chien-Song, C., and Wei-The, T. (2009). A new study on combustion behavior of pine sawdust characterized by the weibull distribution. Chinese Journal of Chemical Engineering, 17(5), 860–868.

Lin, Y., Tian, Y., Xia, Y., Fang, S., Liao, Y., and Yu, Z. (2019). Bioresource technology general distributed activation energy model ( G-DAEM ) on co-pyrolysis kinetics of bagasse and sewage sludge. Bioresource Technology, 273, 545–555.

Lin, Y.-C., Cho, J., Tompsett, G. A., Westmoreland, P. R., and Huber, G. W. (2009). Kinetics and mechanism of cellulose pyrolysis. The Journal of Physical Chemistry C, 113(46), 20097–20107.

Mcguinness, M. J., Sciences, C., and Zealand, N. (1999). Asymptotic approximations to the distributed activation energy model. Applied Mathematics Letters, 12(1999),27-34.

Ordonez-Loza, J., Chejne, F., Jameel, A. G. A., Telalovic, S., Arrieta, A. A., and Sarathy, S. M. (2021). An investigation into the pyrolysis and oxidation of bio-oil from sugarcane bagasse: Kinetics and evolved gases using TGA-FTIR. Journal of Environmental Chemical Engineering, 9(5), 106144.

Órfão, J. J. M. (2007). Review and evaluation of the approximations to the temperature integral. AIChE Journal, 53, 2905–2915.

Pitoyo, J., Eka, T., and Jamilatun, S. (2022). Bio-oil from oil palm shell pyrolysis as renewable energy : A review. Chemica, 9(2), 67–79.

Pradana, Y. S., Daniyanto, Hartono, M., Prasakti, L., and Budiman, A. (2019). Effect of calcium and magnesium catalyst on pyrolysis kinetic of Indonesian sugarcane bagasse for biofuel production. Energy Procedia, 158, 431–439.

Quan, C., Gao, N., and Song, Q. (2016). Journal of analytical and applied pyrolysis pyrolysis of biomass components in a TGA and a fixed-bed reactor : Thermochemical behaviors , kinetics , and product characterization. Journal of Analytical and Applied Pyrolysis, 121, 84–92.

Quan, C., Li, A., and Gao, N. (2009). Thermogravimetric analysis and kinetic study on large particles of printed circuit board wastes. Waste Management, 29(8), 2353–2360.

Sciacovelli, A., and Verda, V. (2012). Sensitivity analysis applied to the multi-objective optimization of a MCFC hybrid plant. Energy Conversion and Management, 60, 180–187.

Sonobe, T., and Worasuwannarak, N. (2008). Kinetic analyses of biomass pyrolysis using the distributed activation energy model. Fuel, 87, 414–421.

Sukarni, S. (2020). Thermogravimetric analysis of the combustion of marine microalgae Spirulina platensis and its blend with synthetic waste. Heliyon, 6(9), e04902.

Terry, L. M., Li, C., Chew, J. J., Aqsha, A., How, B. S., Loy, A. C. M., Chin, B. L. F., Khaerudini, D. S., Hameed, N., Guan, G., and Sunarso, J. (2021). Bio-oil production from pyrolysis of oil palm biomass and the upgrading technologies: A review. Carbon Resources Conversion, 4, 239–250.

Tran, K., Bui, H., and Chen, W. (2016). Distributed activation energy modelling for thermal decomposition of microalgae residues. Chemical Engineering Transactions, 50, 175–180.

Várhegyi, G., Bobály, B., Jakab, E., and Chen, H. (2011). Thermogravimetric study of biomass pyrolysis kinetics. A distributed activation energy model with prediction tests. Energy and Fuels, 25(1), 24–32.

Viju, D., Gautam, R., and Vinu, R. (2018). Application of the distributed activation energy model to the kinetic study of pyrolysis of Nannochloropsis oculata. Algal Research, 35, 168–177.

Vyazovkin, S., Burnham, A. K., Criado, J. M., Pérez-Maqueda, L. A., Popescu, C., and Sbirrazzuoli, N. (2011). ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochimica Acta, 520(1–2), 1–19.

Wang, S., Dai, G., Yang, H., and Luo, Z. (2017). Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review. Progress in Energy and Combustion Science, 62, 33–86.

Wang, S., Ru, B., Lin, H., Sun, W., and Luo, Z. (2015). Pyrolysis behaviors of four lignin polymers isolated from the same pine wood. Bioresource Technology, 182, 120–127.

Xu, Y., and Chen, B. (2013). Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis. Bioresource Technology, 146, 485–493.

Yang, H., Yan, R., Chen, H., Lee, D. H., and Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12–13), 1781–1788.

Zhang, J., Chen, T., Wu, J., and Wu, J. (2014). Multi-Gaussian-DAEM-reaction model for thermal decompositions of cellulose , hemicellulose and lignin : Comparison of N2 and CO2 atmosphere. Bioresource Technology, 166, 87–95.

Zhang, Z., Shen, P., and Jiang, Q.-C. (2008). Differential thermal analysis (DTA) on the reaction mechanism in Fe–Ti–B4C system. Journal of Alloys and Compounds, 463, 498–502.

Zhao, J. P., Tang, G. F., Wang, Y. C., and Han, Y. (2020). Explosive property and combustion kinetics of grain dust with different particle sizes. Heliyon, 6(3), e03457.



  • There are currently no refbacks.

Copyright (c) 2023 Universitas Pendidikan Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Science and Technology is published by UPI.
StatCounter - Free Web Tracker and Counter
View My Stats