Towards Understanding the Corrosion Inhibition Mechanism of Green Imidazolium-Based Ionic Liquids for Mild Steel Protection in Acidic Environments

Elhachmia Ech-Chihbi, Fadoua EL Hajjaji, Abderrahim Titi, Mouslim Messali, Savas Kaya, Goncagül Serdaroğlu, Belkheir Hammouti, Mustapha Taleb

Abstract


Two novel ecological ionic-liquid derivatives based on imidazolium (ILs), namely, 3-(2-ethoxy-2-oxoethyl)-1-phenethyl-1H-imidazol-3-ium-chloride [OE-IM+, Cl-] and 3-(4-ethoxy-4-oxobutyl)-1-phenethyl-1H-imidazol-3-ium-chloride [OB-IM+, Cl-] was studied by Electrochemical Impedance Spectroscopy (EIS), Potentiodynamic Polarization (PP), SEM/EDX analysis and theoretical calculations. It is found that the studied ionic liquids exhibit high inhibition performance for Mild steel (MS) in 1 M HCl. Hence the formation of a barrier layer that retards redox reactions and therefore prevents the corrosion process of MS. Inhibition efficiency for all the compounds increases with their concentration and follows the order [OE-IM+, Cl-] < [OB-IM+, Cl-], indicating effective performance was achieved as the length of the alkyl chain attached to the imidazolium ring extended. Furthermore, DFT and MD simulations were used, revealing the impact of molecular configuration on the anticorrosive properties of these chemicals.

Keywords


Adsorption mechanism; Adsorption; Imidazolium-ILs; Morphology characterization; Protection

Full Text:

PDF

References


Abdelshafi, N. S., Farag, A. A., Heakal, F. El-Taib, Badran, A., AbdelAzim, K. M., El Sayed, A.-R. M., Ibrahim, M. A. (2024). In-depth experimental assessment of two new aminocoumarin derivatives as corrosion inhibitors for carbon steel in HCl media combined with AFM, SEM/EDX, contact angle, and DFT/MDs simulations. Journal of Molecular Structure, 1304, 137638.

Alaoui Mrani S., Ech-chihbi E., Arrousse N., Rais Z., El Hajjaji F., El Abiad C., Radi S., Mabrouki J., Taleb M., Jodeh S. (2021). DFT and electrochemical investigations on the corrosion inhibition of mild steel by novel schiff’s base derivatives in 1 M HCl Solution. Arab Journal of Science and Engineering, 46, 5691–5707.

Ansari, K. R., Ramkumar, S., Chauhan, D. S., Salman, M., Nalini, D., Srivastava, V., and Quraishi, M. A. (2018). Macrocyclic compounds as green corrosion inhibitors for aluminium: electrochemical, surface and quantum chemical studies. International Journal of Corrosion and Scale Inhibition, 7(3), 443-459.

Ardakani, E. K., Kowsari, E., Ehsani, A. (2020). Imidazolium-derived polymeric ionic liquid as a green inhibitor for corrosion inhibition of mild steel in 1.0 M HCl: Experimental and computational study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 586, 1241957.

Asfour, H., Elewady, G. Y., Zaki, E. G., and Fouda, A. S. (2023). Synthesis and characterization of new polymeric ionic liquids as corrosion inhibitors for carbon steel in a corrosive medium: Experimental, spectral, and theoretical studies. CS Omega, 8(44), 41077–41099.

Asmara Y. P., Kurniawan T., Sutjipto A. G. E., Jafar J. (2018). Application of plants extracts as green corrosion inhibitors for steel in concrete -a review. Indonesian Journal of Science and Technology, 3(2), 158-170.

Azgaou, K., Damej, M., El Hajjaji, S., Sebbar, N. K., Elmselleme, H., El Ibrahimi, B., Benmessaoud, M. (2022). Synthesis and characterization of N-(2-aminophenyl)-2-(5-methyl-1H-pyrazol-3-yl) acetamide (AMPA) and its use as a corrosion inhibitor for C38 steel in 1 M HCl. Experimental and theoretical study. Journal of Molecular Structure, 1266, 133451.

Ben Hmamou, D., Salghi, R., Zarrouk, A., Zarrok, H., Touzani, R., Hammouti, B., El Assyry, A. (2015). Investigation of corrosion inhibition of carbon steel in 0.5 M H2SO4 by new bipyrazole derivative using experimental and theoretical approaches. Journal of Environmental Chemical Engineering, 3, 2031–2041.

Benbouguerra K., Chafaa S., Chafai N., Mehri M. (2018). Synthesis, spectroscopic characterization and a comparative study of the corrosion inhibitive efficiency of an α-aminophosphonate and Schiff base derivatives: Experimental and theoretical investigations. Journal of Molecular Structure, 1157, 165–176.

Bouayad, K., Kandri Rodi, Y., El Ghadraoui, E. H., Elmsellem, H., Ouzidan, Y., El Mahi, B., Essassi, E. M., Abdel-Rahman, I., Chetouani, A., Hammouti, B. (2017). Corrosion protection of mild steel in hydrochloric acid at 308 K using benzimidazole derivatives: Weight loss, adsorption and quantum chemical studies. Moroccan Journal of Chemistry, 5(2), 285-296.

Boumhara, K., Tabyaoui, M., Jama, C., and Bentiss, F. (2015). Artemisia mesatlantica essential oil as green inhibitor for carbon steel corrosion in 1 M HCl solution: Electrochemical and XPS investigations. Journal of Industrial and Engineering Chemistry, 29, 146-155.

Bourzi, H., Oukhrib, R., El Ibrahimi, B., AbouOualid, H., Abdellaoui, Y., Balkard, B., Hilali, M., and El Issami, S. (2020). Understanding of anti-corrosive behavior of some tetrazole derivatives in acidic medium: Adsorption on Cu (111) surface using quantum chemical calculations and Monte Carlo simulations. Surface Science, 702, 121692.

Chkirate, K., Azgaou, K., Elmsellem, H., El Ibrahimi, B., Sebbar, N. K., Anouar, E. H., Benmessaoud, M., El Hajjaji, S., Essassi, E. M. (2021). Corrosion inhibition potential of 2-[(5-methylpyrazol-3-yl)methyl] benzimidazole against carbon steel corrosion in 1 M HCl solution: Combining experimental and theoretical studies. Journal of Molecular Liquids, 321, 114750.

Cris, C. A., Timis, E. C., Vermes, H. (2023). PickT: A decision-making tool for the optimal pickling process operation. Materials, 16, 5567.

Deng, Q., Jeschke, S., Mishra, R. K., Spicher, S., Darouich, S., Schreiner, E., Eiden, P., Deglmann, P., Gorges, J. N., Chen, X.-B., Keil, P., Cole, I. (2024). Design of alkyl-substituted aminothiazoles to optimize corrosion inhibition for galvanized steel: A combined experimental and molecular modeling approach. Corrosion Science, 227, 111733.

Didouh, H., Buyuksagis, A., Meliani, M. H., Dilek, M., Kayali, Y., Suleiman, R. K., Saleh, T. A. (2023). Investigating the use of moringa oleifera leaf extract as an environment-friendly corrosion inhibitor for API 5L X52 steel in 1 M HCl. Journal of Molecular Liquids, 390, 122910.

Ech-chihbi, E., Salim, R., Ouakki, M., Koudad, M., Guo, L., Azam, M., Benchat, N., Rais, Z., Taleb, M. (2023). Corrosion resistance assessment of copper, mild steel, and aluminum alloy 2024-T3 in acidic solution by a novel imidazothiazole derivative. Materials Today Sustainability, 24, 100524.

Ech-chihbi, E., Salim, R., Oudda, H., Elaatiaoui A., Rais Z., Oussaid A., El Hajjaji F., Hammouti B., Elmsellem H., Taleb M. (2016). Effect of some imidazopyridine compounds on carbon steel corrosion in hydrochloric acid solution. Der Pharm Chem, 8(13), 214-230.

El Faydy M., Touir R., Touhami M. E., Zarrouk A., and Jama C. (2018). Corrosion inhibition performance of newly synthesized 5-alkoxymethyl-8-hydroxyquinoline derivatives for carbon steel in 1 M HCl solution: Experimental, DFT and Monte Carlo simulation studies. Physical Chemistry Chemical Physics, 20, 20167.

El-Hajjaji, F., Ech-chihbi, E., Rezki, N., Benhiba, F., Taleb, M., Chauhan, D. S., Quraishi, M. A. (2020). Electrochemical and theoretical insights on the adsorption and corrosion inhibition of novel pyridinium-derived ionic liquids for mild steel in 1 M HCl. Journal of Molecular Liquids, 314, 113737.

El-khlifi, A., Zouhair, F. Z., Lgaz, H., Saadouni, M., Salghi, R., Merimi, I., Siaj, M., and Erramli, H. (2024). Evaluation of 1, 4-benzothiazines in steel corrosion inhibition in 15% hcl: experimental and theoretical perspectives. Moroccan Journal of Chemistry, 12(2), 509-533.

El-Nagar, R. A., Khalil, N. A., Atef, Y. (2024). Evaluation of ionic liquids based imidazolium salts as an environmentally friendly corrosion inhibitors for carbon steel in HCl solutions. Scientific Reports, 14, 1889.

Feng, L., Zhang, S., Qiang, Y., Xu, S., Tan, B., Chen, S. (2018). The synergistic corrosion inhibition study of different chain lengths ionic liquids as green inhibitors for X70 steel in acidic medium. Materials Chemistry and Physics, 215, 229-241.

Gadioli, A. O., de Souza, L. M., Pereira, E. C., Monteiro, S. N., Azevedo, A. R. G. (2024). Imidazolium-based ionic liquids as corrosion inhibitors for stainless steel in different corrosive media: An overview. Journal of Materials Research and Technology, 29, 803–823.

Gazquez, J. L., Cedillo, A., and Vela, A. (2007). Electrodonating and electroaccepting powers. The Journal of Physical Chemistry A, 111(10), 1966-1970.

Ghanty, T. K., and Ghosh, S. K. (1993). Correlation between hardness, polarizability, and size of atoms, molecules, and clusters. The Journal of Physical Chemistry, 97(19), 4951-4953.

Ghazoui, A., Bencaht, N., Al-Deyab, S. S., Zarrouk, A., Hammouti, B., Ramdani, M., Guenbour, M. (2013). An investigation of two novel pyridazine derivatives as corrosion inhibitors for C38 Steel in 1.0 M HCl. International Journal of Electrochemical Science, 8, 2272–2292.

Ghiaty, E. A., Shafek, S. H., and Atta, A. M. (2024). Morphological performances and corrosion inhibition mechanism of new amphiphilic tetra-cationic imidazolium ionic liquids for carbon steel in 1 M HCl medium. Journal of Molecular Structure, 1300, 137252.

Goyal, M., Vashisht, H., Kumar, A., Kumar, S., Bahadur, I., Benhiba, F., Zarrouk, A. (2020). Isopentyltriphenylphosphoniumbromideionic liquid as a newly effective corrosion inhibitor on metal-electrolyte interface in acidic medium: Experimental, surface morphological (SEM-EDX and AFM) and computational analysis. Journal of Molecular Liquids, 316, 113838.

Hamani, H., Douadi, T., Al-Noaimi, M., Issaadi, S., Daoud, D., Chafaa, S. (2014). Electrochemical and quantum chemical studies of some azomethine compounds as corrosion inhibitors for mild steel in 1 M hydrochloric acid. Corrosion Science, 88, 234-245.

Haque, J., Verma, C., Srivastava, V., Wan Nik, W. B. (2021). Corrosion inhibition of mild steel in 1 M HCl using environmentally benign Thevetia peruviana flower extracts. Sustainable Chemistry and Pharmacy, 19, 100354.

Hrimla, M., Bahsis, L., Boutouil, A., Laamari, M. R., Julvec, M., Stiriba, S. (2021). Corrosion inhibition performance of a structurally well-defined 1,2,3-triazole derivative on mild steel-hydrochloric acid interface. Journal of Molecular Structure, 1231, 129895.

Huang, L., Yang, K.-P., Zhao, Q., Li, H.-J., Wang, J.-Y., Wu, Y.-C. (2022). Corrosion resistance and antibacterial activity of procyanidin B2 as a novel environment-friendly inhibitor for Q235 steel in 1 M HCl solution. Bioelectrochemistry, 143, 107969.

Jalab, R., Saad, M., Benali, A., Hussein, I. A., Khaled, M. (2023). Biodegradable polysaccharide grafted polyacrylamide inhibitor for corrosion in CO2-saturated saline solution. Heliyon, 9, e20304.

Ji, Y., Xu, B., Gong, W., Zhang, X., Jin, X., Ning, W., Meng, Y., Yang, W., Chen, Y. (2016). Journal of the Taiwan Institute of Chemical Engineers, 66, 301.

Kaya, S., and Kaya, C. (2015a). A new equation for calculation of chemical hardness of groups and molecules. Molecular Physics, 113(11), 1311-1319.

Kaya, S., and Kaya, C. (2015b). A simple method for the calculation of lattice energies of inorganic ionic crystals based on the chemical hardness. Inorganic Chemistry, 54(17), 8207-8213.

Kokalj, A., Behzadi, H., and Farahati, R. (2020). DFT study of aqueous-phase adsorption of cysteine and penicillamine on Fe(110): Role of bond-breaking upon adsorption. Applied Surface Science, 514, 145896.

Larioui, A., Hmada, A., El Magri, A., Errahmany, N., El Hajri, F., Dkhireche, N., El Bakkali, S., Touir, R., and Boukhris, S. (2024). Corrosion inhibition influence of the synthetized chromen-6-one derivatives on mild steel in 1.0 M HCl electrolyte: Electrochemical, spectroscopic and theoretical investigations. Moroccan Journal of Chemistry, 12(2), 570-593.

Lazrak, J., Ech-chihbi, E., El Ibrahimi, B., El Hajjaji, F., Rais, Z., Tachihante, M., Taleb, M. (2022). Detailed DFT/MD simulation, surface analysis and electrochemical computer explorations of aldehyde derivatives for mild steel in 1.0 M HCl. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 632, 127822.

Li, E., Liu, S., Luo, F., and Yao, P. (2023). Amino acid imidazole ionic liquids as green corrosion inhibitors for mild steel in neutral media: Synthesis, electrochemistry, surface analysis and theoretical calculations. Journal of Electroanalytical Chemistry, 944, 117650.

Mangalam, N. A., Kurup, M. P., Suresh, E., Kaya, S., and Serdaroğlu, G. (2021). Diversities in the chelation of aroylhydrazones towards cobalt (II) salts: Synthesis, spectral characterization, crystal structure and some theoretical studies. Journal of Molecular Structure, 1232, 129978.

Murmu, M., Saha, S. K., Murmu, N. C., Banerjee, P. (2019). Effect of stereochemical conformation into the corrosion inhibitive behaviour of double azomethine based Schiff bases on mild steel surface in 1 mol L−1 HCl medium: an experimental, density functional theory and molecular dynamics simulation study. Corrosion Science, 146, 134-151.

Njoku, A. C., Anyanwu, P. I., and Nwanonenyi, S. C. (2023). Understanding the anticorrosion properties of chitosan grafted poly-aspartic acid against mild steel corrosion in 1 M HCl: Electrochemical and theoretical considerations. Moroccan Journal of Chemistry, 11(04), 11-4.

Olivares, Z. G., Hernández Gayosso, M. J., and Mora Mendoza, J. L. (2007). Corrosion inhibitors performance for mild steel in CO2 containing solutions. Materials and Corrosion, 58(6), 427-437.

Ouakki, M., Galai, M., Benzekri, Z., Arribou, Z., Ech-chihbi, E., Guo, L., Dahmani, K., Nouneh, K., Briche, S., Boukhris, S., Cherkaoui, M. (2021). A detailed investigation on the corrosion inhibition effect of newly synthesized Pyran derivative on mild steel in 1.0 M HCl: Experimental, surface morphological (SEM-EDS, DRXand AFM) and computational analysis (DFT and MD simulation). Journal of Molecular Liquids, 344, 117777.

Ouakki, M., Galai, M., Rbaa, M., Abousalem, A. S., Lakhrissi, B., EbnTouhami, M., Cherkaoui, M. (2020). Electrochemical, thermodynamic and theoretical studies of some imidazole derivatives compounds as acid corrosion inhibitors for mild steel. Journal of Molecular Liquids, 319, 114063.

Parr, R. G., Szentpály, L. V., and Liu, S. (1999). Electrophilicity index. Journal of the American Chemical Society, 121(9), 1922-1924.

Preethi Kumari, P., Shetty, P., and Rao, S. A. (2017). Electrochemical measurements for the corrosion inhibition of mild steel in 1 M hydrochloric acid by using an aromatic hydrazide derivative. Arabian Journal of Chemistry, 10(5), 653–663.

Rajeswari, V., Kesavan, D., Gopiraman, M., Viswanathamurthi, P., Poonkuzhali, K., Palvannan, T. (2014). Corrosion inhibition of Eleusine aegyptiaca and Croton rottleri leaf extracts on cast iron surface in 1 M HCl medium. Applied Surface Science, 314, 537-545.

Rochdi, A., Kassou, O., Dkhireche, N., Touir, R., El Bakri, M., Touhami, M. E., Sfaira, M., Mernari, B., Hammouti, B. (2014). Inhibitive properties of 2,5-bis(n-methylphenyl)-1,3,4-oxadiazole and biocide on corrosion, biocorrosion and scaling controls of brass in simulated cooling water. Corrosion Science, 80, 442-452.

Salim, R., Nahlé, A., El-Hajjaji, F., Ech-chihbi, E., Benhiba, F., El Kalai, F., Benchat, N., Oudda, H., Guenbour, A., Taleb, M., Warad, I., Zarrouk, A. (2021). Experimental, density functional theory, and dynamic molecular studies of imidazopyridine derivatives as corrosion inhibitors for mild steel in hydrochloric acid. Surface Engineering and Applied Electrochemistry, 57(2), 233–254.

Serdaroğlu, G., Kaya, S., and Touir, R. (2020). Eco-friendly sodium gluconate and trisodium citrate inhibitors for low carbon steel in simulated cooling water system: Theoretical study and molecular dynamic simulations. Journal of Molecular Liquids, 319, 114108.

Shanmugapriya, R., Ravi, M., Ravi, S., Ramasamy, M., Maruthapillai, A., Selvi, J. A. (2023). Electrochemical and morphological investigations of elettaria cardamomum pod extract as a green corrosion inhibitor for mild steel corrosion in 1 N HCl. Inorganic Chemistry Communications, 154, 110958.

Sheetal, A., Singh, A. K., Thakur, S., Pani, B., Singh, M. (2024). Heterocyclic compounds as corrosion inhibitors for iron alloys in various industrial processes: A review. Journal of Industrial and Engineering Chemistry, 130, 141–177.

Singh, A. K., Chugh, B., Singh, M., Thakur, S., Pani, B., Guo, L., and Serdaroglu, G. (2021). Hydroxy phenyl hydrazides and their role as corrosion impeding agent: A detailed experimental and theoretical study. Journal of Molecular Liquids, 330, 115605.

Souza, L., Pereira, E., Matlakhova, L., Nicolin, V. A. F., Monteiro, S. N., de Azevedo, A. R. G. (2023). Ionic liquids as corrosion inhibitors for carbon steel protection in hydrochloric acid solution: A first review. Journal of Materials Research and Technology, 22, 2186–2205.

Tebbji, K., Bouabdellah, I., Aouniti, A., Hammouti, B., Oudda, H., Benkaddour, M., and Ramdani, A. (2007). N-benzyl-N, N-bis [(3, 5-dimethyl-1H-pyrazol-1-yl) methyl] amine as corrosion inhibitor of steel in 1 M HCl. Materials Letters, 61(3), 799-804.

Udunwa, D. I., Onukwuli, O. D., Nwanonenyi, S. C., Ezekannagha, C. B. (2024). Novel imidazole based ionic liquid as anti-corrosion additive for aluminum alloy: Combined experimental, DFT/MD simulation and soft computing approach. Applied Surface Science Advances, 19, 100578.

Zarrouk, A., Messali, M., Zarrok, H., Salghi, R., Al-Sheikh Ali, A., Hammouti, B., Al-Deyab, S.S. Bentiss, F. (2012). Synthesis, characterization and comparative study of new functionalized imidazolium-based ionic liquids derivatives towards corrosion of c38 steel in molar hydrochloric acid. International Journal of Electrochemical Science, 7(8), 6998-7015.

Zerga B., Attayibat A., Sfaira M., Taleb M., Hammouti B., Ebn Touhami M., Radi S., Rais Z. (2010), Effect of some tripodal bipyrazolic compounds on C38 steel corrosion in hydrochloric acid solution. Journal of Applied Electrochemistry, 40(9), 1575-1582

Zhang, G. A., Hou, X. M., Hou, B. S., Liu, H. F. (2019). Benzimidazole derivatives as novel inhibitors for the corrosion of mild steel in acidic solution: Experimental and theoretical studies. Journal of Molecular Liquids, 278, 413–422.




DOI: https://doi.org/10.17509/ijost.v9i2.68764

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Universitas Pendidikan Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Science and Technology is published by UPI.
StatCounter - Free Web Tracker and Counter
View My Stats