Triazolopyrimidine Derivatives: A Comprehensive Review of Their Synthesis, Reactivity, Biological Properties, and Molecular Docking Studies
Abstract
Keywords
Full Text:
PDFReferences
Cebeci, Y. U., Batur, Ö. Ö., and Boulebd, H. (2024). Design, synthesis, theoretical studies, and biological activity evaluation of new nitrogen-containing poly heterocyclic compounds as promising antimicrobial agents. Journal of Molecular Structure, 1299, 137115.
Obaid, R. J., Mughal, E. U., Naeem, N., Al-Rooqi, M. M., Sadiq, A., Jassas, R. S., Moussa, Z., and Saleh, A. (2022). Pharmacological significance of nitrogen-containing five and six-membered heterocyclic scaffolds as potent cholinesterase inhibitors for drug discovery. Process Biochemistry, 120, 250-259.
Elmsellem, H., Basbas, N., Chetouani, A., Aouniti, A. S., Radi, M., Messali, M., and Hammouti, B. (2014). Quantum chemical studies and corrosion inhibitive properties of mild steel by some pyridine derivatives in 1 N HCl solution. Portugaliae Electrochimica Acta, 32(2), 77-108.
Ghazoui, A., Saddik, R., Benchat, N., Guenbour, M., Hammouti, B., Al-Deyab, S. S., and Zarrouk, A. (2012). Comparative study of pyridine and pyrimidine derivatives as corrosion inhibitors of C38 steel in molar HCl. International Journal of Electrochemical Science, 7(8), 7080-7097.
Zarrouk, A., Hammouti, B., Al-Deyab, S. S., Salghi, R., Zarrok, H., Jama, C., and Bentiss, F. (2012). Corrosion inhibition performance of 3,5-diamino-1,2,4-triazole for protection of copper in nitric acid solution. International Journal of Electrochemical Science, 7(7), 5997-6011.
Renyu, Q., Yuchao, L., Wishwajith, W. M., Kandegama, W., Qiong, C., and Guagfa, Y. (2018). Recent applications of triazolopyrimidine-based bioactive compounds in medicinal and agrochemical chemistry. Mini-Reviews in Medicinal Chemistry, 18, 781-790.
Ramadan, M., Abd El-Aziz, M., Elshaier, Y. A. M. M., Youssif, B. G. M., Brown, A. B., Fathy, H. M., and Aly, A. A. (2020). Design and synthesis of new pyranoquinolinone heteroannulated to triazolopyrimidine of potential apoptotic antiproliferative activity. Bioorganic Chemistry, 105, 104392.
Li, Y., Du, R., Nie, Y., Wang, T., Ma, Y., and Fan, Y. (2021). Design, synthesis and biological assessment of novel CDK4 inhibitor with potent anticancer activity. Bioorganic Chemistry, 109, 104717.
Dawood, D. H., Nossier, E. S., Ali, M. M., and Mahmoud, A. E. (2020). Synthesis and molecular docking study of new pyrazole derivatives as potent anti-breast cancer agents targeting VEGFR-2 kinase. Bioorganic Chemistry, 101, 103916.
Ettahiri, W., and Essassi, E. M. (2019). Recent advances in the development of nitrogen-containing heterocyclic compounds as anticancer agents: A review. Moroccan Journal of Heterocyclic Chemistry, 18, 74-102.
Nemr, M. M. T., and AboulMagd, A. M. (2020). New fused pyrimidine derivatives with anticancer activity: Synthesis, topoisomerase II inhibition, apoptotic inducing activity and molecular modeling study. Bioorganic Chemistry, 103, 104134.
Singh, P. K., Choudhary, S., Kashyap, A., Verma, H., Kapil, S., Kumar, M., Arora, M., and Silakari, O. (2019). An exhaustive compilation on chemistry of triazolopyrimidine: A journey through decades. Bioorganic Chemistry, 88, 102919.
Lahmidi, S., Sert, Y., Şen, F., El Hafi, M., Ettahiri, W., Gökce, H., Essassi, E. M., Mague, J. T., and Ucun, F. (2021). Synthesis, crystal structure, Hirshfeld surface analysis, spectral characterizations and quantum computational assessments of 1 hydroxy-3-methyl-11H-pyrido[2,1-b] quinazolin-11-one. Journal of Molecular Structure, 1249, 131592.
Ettahiri, W., El Hafi, M., Lahmidi, S., Abad, N., Ramli, Y., El Ghayati, L., and Essassi, E. M. (2020). Pyrazolo [3, 4-d] pyrimidine derivatives: Synthesis, reactivity and biological properties. Journal Marocain de Chimie Hétérocyclique, 19, 1–36.
Abad, N., Ramli, Y., Ettahiri, W., Ferfra, S., and Essassi, E. M. (2020). Quinoxaline derivatives: Syntheses, reactivities and biological properties. Journal Marocain de Chimie Hétérocyclique, 19, 1–62.
Ettahiri, W., and Essassi, E. M. (2019). Benzimidazolone derivatives: Synthesis, reactivity and biological properties. Journal Marocain de Chimie Hétérocyclique, 18, 48–73.
Bououdina, A., Ech-Chihbi, E., El-Hajjaji, F., El Ibrahimi, B., Kaya, S., and Taleb, M. (2021). Anisole derivatives as sustainable-green inhibitors for mild steel corrosion in 1 M HCl: DFT and molecular dynamic simulations approach. Journal of Molecular Liquids, 324, 115088.
Arrousse, N., Salim, R., Abdellaoui, A., El Hajjaji, F., Hammouti, B., Mabrouk, E. H., Diño, W. A., and Taleb, M. (2021). Synthesis, characterization, and evaluation of xanthene derivative as highly effective, nontoxic corrosion inhibitor for mild steel immersed in 1 M HCl solution. Journal of the Taiwan Institute of Chemical Engineers, 120, 344–359.
El Arrouji, S., Karrouchi, K., Berisha, A., Alaoui, K. I., Warad, I., Rais, Z., Radi, S., Taleb, M., Ansar, M., and Zarrouk, A. (2020). New pyrazole derivatives as effective corrosion inhibitors on steel-electrolyte interface in 1 M HCl: Electrochemical, surface morphological (SEM) and computational analysis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 604, 125325.
Ech-Chihbi, E., Nahlé, A., Salim, R., Oudda, H., El Hajjaji, F., El Kalai, F., El Aatiaoui, A., and Taleb, M. (2019). An investigation into quantum chemistry and experimental evaluation of imidazopyridine derivatives as corrosion inhibitors for C-steel in acidic media. Journal of Bio-and Tribo-Corrosion, 5, 1–18.
Rahmani, H., Alaoui, K. I., Azzouzi, M. E., Benhiba, F., El Hallaoui, A., Rais, Z., Taleb, M., Saady, A., Labriti, B., Aouniti, A., and Zarrouk, A. (2019). Corrosion assessment of mild steel in acid environment using novel triazole derivative as an anti-corrosion agent: A combined experimental and quantum chemical study. Chemical Data Collections, 24, 100302.
Bakhouch, M., Es-Sounni, B., Nakkabi, A., and El Yazidi, M. (2021). Thioaurones: Recent advances in synthesis, reactivity, and biological activity. Mini-Reviews in Organic Chemistry, 18, 313–327.
Chalkha, M., Bakhouch, M., Akhazzan, M., Bourass, M., Nicolas, Y., and Al Houari, G., El Yazidi, M. (2020). Design, synthesis and characterization of functionalized pyrazole derivatives bearing amide and sulfonamide moieties from aza-aurones. Journal of Chemical Sciences, 132, 86.
Chalkha, M., El Moussaoui, A., Hadda, T. B., Berredjem, M., Bouzina, A., Almalki, F. A., Seghrouchni, H., Bakhouch, M., Saadi, M., El Ammari, L., Abdellatif, M. H., and El Yazidi, M. (2022). Crystallographic study, biological evaluation and DFT/POM/Docking analyses of pyrazole-linked amide conjugates: Identification of antimicrobial and antitumor pharmacophore sites. Journal of Molecular Structure, 1252, 131818.
Cherriet, S., Merzouki, M., El-Fechtali, M., Loukili, E., Challioui, A., Soulaymani, A., and Ouasghir, A. (2023). In silico investigation of Aristolochia longa anticancer potential against the epidermal growth factor receptor (EGFR) in the tyrosine kinase domain. Moroccan Journal of Chemistry, 11(4), 1074–1085.
Merzouki, M., Challioui, A., Bourassi, L., Abidi, R., Bouammli, B., and El Farh, L. (2023). In silico evaluation of antiviral activity of flavone derivatives and commercial drugs against SARS-CoV-2 main protease (3CLpro). Moroccan Journal of Chemistry, 11, 11.
Diass, K., Merzouki, M., Elfazazi, K., Azzouzi, H., Challioui, A., Azzaoui, K., Hammouti, B., Touzani, R., Depeint, F., and Ayerdi Gotor, A. (2023). Essential oil of Lavandula officinalis: Chemical composition and antibacterial activities. Plants, 12, 1571.
Burley, S. K., Berman, H. M., Kleywegt, G. J., Markley, J. L., Nakamura, H., and Velankar, S. (2017). Protein Data Bank (PDB): The single global macromolecular structure archive. Protein Crystallography: Methods and Protocols, 627–641.
Faris, A., Edder, Y., and Louchachha, I. (2023). From himachalenes to trans-himachal: Unveiling bioactivity through hemisynthesis and molecular docking analysis. Scientific Reports, 13, 17653.
Fajriyah, N. N., Mugiyanto, E., Rahmasari, K. S., Nur, A. V., Najihah, V. H., Wihadi, M. N., ... and Vo, T. H. (2023). Indonesian herbal medicine and its active compounds for anti-diabetic treatment: A systematic mini review. Moroccan Journal of Chemistry, 11(4), 948–964.
Pismataro, M. C., Felicetti, T., and Bertagnin, C., (2021). 1,2,4-Triazolo[1,5-a]pyrimidines: Efficient one-step synthesis and functionalization as influenza polymerase PA-PB1 interaction disruptors. European Journal of Medicinal Chemistry, 221, 113494.
Kudyakova, Y. S., Onoprienko, A. Y., Slepukhin, P. A., Burgart, Y. V., Saloutin, V. I., and Bazhin, D. N. (2019). Fluorine-containing furan-3(2H)-ones in reactions with binucleophiles: CF3 vs C2F5. Chemistry of Heterocyclic Compounds, 55, 517–522.
Fares, I. M. Z., Mekky, A. E. M., Abdelhamid, I. A., and Elwahy, A. H. M. (2019). Bis(enaminones) as versatile precursors for novel bis([1,2,4]triazolo[1,5-a]pyrimidines). Journal of Heterocyclic Chemistry, 56, 1958–1965.
Shaabani, A., Seyyedhamzeh, M., Ganji, N., Sangachin, M. H., and Armaghan, M. (2015). One-pot four-component synthesis of highly substituted [1,2,4]triazolo[1,5-a]pyrimidines. Molecular Diversity, 19, 709–715.
Fizer, M., and Slivka, M. (2016). Synthesis of [1,2,4]triazolo[1,5-a]pyrimidine (microreview). Chemistry of Heterocyclic Compounds, 52, 155–157.
Li, Z. R., Wang, S., Yang, L., Yuan, X. H., Suo, F. Z., Yu, B., and Liu, H. M. (2019). Experience-based discovery (EBD) of aryl hydrazines as new scaffolds for the development of LSD1/KDM1A inhibitors. European Journal of Medicinal Chemistry, 166, 432–444.
Lyapustin, D. N., Ulomsky, E. N., Voinkov, E. K., and Rusinov, V. L. (2019). Preparation of new 5-methylthio-6-nitro-1,2,4-triazolo[1,5-a]pyrimidine-7-ones as structural analogues of antiviral drugs. Actes de la conférence AIP, 2063, 300121–300124.
Kolosov, M. A., Shvets, E. H., Manuenkov, D. A., Kulyk, O. G., Mazepa, A. V., and Orlov, V. D. (2019). A synthesis of 6-functionalized 7-unsubstituted- and 7-methyl[1,2,4]azolo[1,5-a]pyrimidine derivatives. Synthetic Communications, 49, 611–615.
Elkamhawy, A., Al-Sanea, M. M., Song, C., Sim, T., and Roh, E. J. (2015). Design and synthesis of new [1,2,3]triazolo[4,5-d]pyrimidine derivatives as potential antiproliferative agents. Korean Chemical Society, 36, 1863–1873.
Li, Z. H., Yang, D. X., Geng, P. F., Zhang, J., Wei, H. M., Hu, B., Guo, Q., Zhang, X. H., Guo, W. G., Zhao, B., Yu, B., Ma, L. Y., and Liu, H. M. (2016). Design, synthesis and biological evaluation of [1,2,3]triazolo[4,5-d]pyrimidine derivatives possessing a hydrazone moiety as antiproliferative agents. European Journal of Medicinal Chemistry, 124, 967–980.
Redenti, S., Ciancetta, A., Pastorin, G., Cacciari, B., Moro, S., Spalluto, G., and Federico, S. (2016). Pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidines and structurally simplified analogs: Chemistry and SAR profile as adenosine receptor antagonists. Current Topics in Medicinal Chemistry, 16, 3224–3257.
Wang, C., Tang, C., Fang, X., Li, Z., and Wang, Q. (2015). Synthesis of unprecedented benzofused [1,2,4]-triazoloquinazolines via benzyne Diels–Alder reaction with 7-vinyl-[1,2,4]triazolo[1,5-c]pyrimidines as dienes. Synlett, 26, 931–936.
Tang, C., Wang, C., Li, Z., and Wang, Q. (2014). Synthesis of 8-bromo-7-chloro[1,2,4]triazolo[4,3-c]pyrimidines, their ring rearrangement to [1,5-c] analogues, and further diversification. Synthesis, 46, 2734–2746.
Wang, S. B., Piao, G. C., Zhang, H. J., and Qua, Z. S. (2015). Synthesis of 5-alkoxythieno[2,3-e][1,2,4]triazolo[4,3-c]pyrimidine derivatives and evaluation of their anticonvulsant activities. Molecules, 20, 6827–6843.
Gladkov, E. S., Sirko, S. M., Musatov, V. I., Shishkina, S. V., Tkachenko, I. G., and Komykhov, S. A. (2018). New spiro derivative of dihydro-1,2,3-triazolo[1,5-a]pyrimidine as a product of multicomponent reaction. Chemistry of Heterocyclic Compounds, 54, 1139–1144.
Knyazev, A. A., Slepukhin, P. A., Tolkunov, S. V., Tyurin, V. I., and Komarov, V. Y. (2018). Investigation of the transformation of 3-ethoxycarbonyl-5-methyl-2,3-dihydro-1H-1,2,4-triazolo[4,3-a]pyrimidine under the action of strong nucleophiles. Russian Journal of Organic Chemistry, 54, 1190–1196.
Pericherla, K., Barua, A., and Ranu, B. C. (2018). Microwave-assisted one-pot three-component synthesis of novel [1,2,4]triazolo[1,5-a]pyrimidines under transition-metal-free conditions. Tetrahedron Letters, 59, 2326–2329.
Shafiee, M., Nasr-Esfahani, M., Mousavi, F., and Baghery, S. (2018). Synthesis and biological evaluation of new 1,2,4-triazolo[1,5-a]pyrimidine derivatives as potential antimicrobial agents. Bioorganic and Medicinal Chemistry Letters, 28, 2549–2554.
Singh, G. S., Desta, Z. Y., and Alnamer, Y. (2018). Advances in the synthesis and medicinal applications of triazolopyrimidines. European Journal of Medicinal Chemistry, 158, 543–570.
Vassilev, G. N., Todorov, I. T., Ivanov, D. G., and Doytchinova, I. A. (2019). Synthesis and QSAR modeling of triazolo[1,5-a]pyrimidine derivatives as potential A2A adenosine receptor antagonists. Journal of Molecular Graphics and Modelling, 89, 21–30.
Xia, L., Zhang, Y., Wang, Y., and Zhao, H. (2019). Design, synthesis, and antitumor evaluation of novel 1,2,4-triazolo[4,3-a]pyrimidine derivatives. Bioorganic and Medicinal Chemistry, 27, 1125–1134.
Zhang, C., Zhang, Z., Liu, H., and Li, J. (2019). Synthesis and biological evaluation of novel 1,2,4-triazolo[1,5-a]pyrimidine derivatives as potential antiviral agents. European Journal of Pharmaceutical Sciences, 134, 30–38.
Lhamidi, S., Anouar, E. H., El Hafi, M., Boulhaoua, M., Ejjoumamany, A., El Jemli, M., Essassi, E. M., and Magu, J. T. (2019). Synthesis, X-ray, spectroscopic characterization, DFT and antioxidant activity of 1,2,4-triazolo[1,5-a]pyrimidine derivatives. Journal of Molecular Structure, 1177, 131-142.
Sirakanyan, S. N., Hakobyan, E. K., and Hovakimyan, A. A. (2019). Synthesis of new sulfur-substituted pentacyclic 1,2,4-triazolopyrimidine derivatives. Russian Journal of Organic Chemistry, 55, 308-313.
Said, M. A., Eldehna, W. M., Nocentini, A., Bonardi, A., Fahim, S. H., Bua, S., Soliman, D. H., Abdel-Aziz, H. A., Gratteri, P., Abou-Seri, S. M., and Supuran, C. T. (2019). Synthesis, biological and molecular dynamics investigations with a series of triazolopyrimidine/triazole-based benzenesulfonamides as novel carbonic anhydrase inhibitors. Journal Européen de Chimie Médicinale, 185, 111843.
Savateev, K. V., Ulomsky, E. N., Fedotov, V. V., Rusinov, V. L., Sivak, K. V., Lyubishin, M. M., Kuzmich, N. N., and Aleksandrov, A. G. (2017). 6-Nitrotriazolo[1,5-a]pyrimidines as promising structures for pharmacotherapy of septic conditions. Russian Journal of Bioorganic Chemistry, 43, 402-410.
Abd El-Aleam, R. H., George, R. F., Lee, K. J., Keeton, A. B., Piazza, G. A., Kamel, A. A., El-Daly, M. E., Hassan, G. S., and Abdel-Rahman, H. M. (2019). Design and synthesis of 1,2,4-triazolo[1,5-a]pyrimidine derivatives as PDE 4B inhibitors endowed with bronchodilator activity. Archiv der Pharmazie - Chemistry in Life Sciences, 352(1), 1-11.
Pinheiro, L. C. S., Feitosa, L. M., Gandi, M. O., Silveira, F. F., and Boechat, N. (2019). The development of novel compounds against malaria: Quinolines, triazolpyridines, pyrazolopyridines, and pyrazolopyrimidines. Molecules, 24(1), 1-24.
Chernyshev, V. M., Pyatakov, D. A., Sokolov, A. N., Astakhov, A. V., Gladkov, E. S., Shishkina, S. V., and Shishkin, O. V. (2014). Partially hydrogenated 2-amino[1,2,4]triazolo[1,5-a]pyrimidines as synthons for the preparation of polycondensed heterocycles: Reaction with chlorocarboxylic acid chlorides. Tetrahedron, 70, 684-701.
Astakhov, A. V., Sokolov, A. N., Pyatakov, D. A., Shishkina, S. V., Shishkin, O. V., and Chernyshev, V. M. (2015). Reactivity of 2-amino[1,2,4]triazolo[1,5-a]pyrimidines with various saturation of the pyrimidine ring towards electrophiles. Chemistry of Heterocyclic Compounds, 51, 1039-1047.
Karthic, A., Kesarwani, V., Singh, R. K., Yadav, P. K., Chaturvedi, N., Chauhan, P., Yadav, B. S., and Kushwaha, S. K. (2022). Computational analysis reveals monomethylated triazolopyrimidine as a novel inhibitor of SARS-CoV-2 RNA-dependent RNA polymerase (RdRp). Molecules, 27, 801.
Abu-Melha, S., Edrees, M. M., Riyadh, S. M., Abdelaziz, M. R., Elfiky, A. A., and Gomha, S. M. (2020). Clean grinding technique: A facile synthesis and in silico antiviral activity of hydrazones, pyrazoles, and pyrazines bearing thiazole moiety against SARS-CoV-2 main protease (Mpro). Molecules, 25, 4565.
Muhammad, Z. A., Farghaly, T. A., Althagafi, I., Al-Hussain, S. A., Zaki, M. E., and Harras, M. F. (2021). Synthesis of antimicrobial azoloazines and molecular docking for inhibiting COVID-19. Journal of Heterocyclic Chemistry, 58, 1286-1301.
Nettekoven, M., Adam, J. M., Bendels, S., Bissantz, C., Fingerle, J., Grether, U., Grüner, S., Guba, W., Kimbara, A., and Ottaviani, G. (2016). Novel triazolopyrimidine-derived cannabinoid receptor 2 agonists as potential treatment for inflammatory kidney diseases. ChemMedChem, 11, 179-189.
Tageldin, G. N., Ibrahim, T. M., Fahmy, S. M., Ashour, H. M., Khalil, M. A., Nassra, R. A., and Labouta, I. M. (2019). Design, synthesis and evaluation of some pyrazolo[3,4-d]pyrimidines as anti-inflammatory agents. Bioorganic Chemistry, 90, 102844.
Subramanium, P. (2015). Evaluation of anti-inflammatory and analgesic activities of methanolic leaf extract of the endangered tree species Hildegardia populifolia (Roxb.) Schott and Endl. International Journal of Green Pharmacy, 9, 125-130.
Tageldin, G. N., Fahmy, S. M., Ashour, H. M., Khalil, M. A., Nassra, R. A., and Labouta, I. M. (2018). Design, synthesis and evaluation of some pyrazolo[3,4-d]pyrimidines as anti-inflammatory agents. Bioorganic Chemistry, 78, 358-371.
Abdel Hafez, N. A., Ali, K. A., Ibrahim, A. A., Elnaggar, D. H., and Sleem, A. A. (2018). Design, synthesis, and in-vivo anti-inflammatory activity of new celecoxib analogues as NSAID. Mini Reviews in Medicinal Chemistry, 18, 1398-1408.
Abdel-Aziz, H. A., Eldehna, W. M., Fares, M., Elsaman, T., AbdelAziz, M. M., and Soliman, D. H. (2015). Synthesis, in vitro and in silico studies of some novel 5-nitrofuran-2-yl hydrazones as antimicrobial and antitubercular agents. Biological and Pharmaceutical Bulletin, 38, 1617-1630.
Deb, P. K., Kaur, R., Chandrasekaran, B., Bala, M., Gill, D., Kaki, V. R., Akkinepalli, R. R., and Mylavaram, R. (2014). Synthesis, anti-inflammatory evaluation, and docking studies of some new thiazole derivatives. Medicinal Chemistry Research, 23, 2780-2792.
Oukoloff, K., Lucero, B., Francisco, K. R., Brunden, K. R., and Ballatore, C. (2019). 1, 2, 4-Triazolo [1, 5-a] pyrimidines in drug design. European Journal of Medicinal Chemistry, 165, 332-346.
Huo, J. L., Wang, S., Yuan, X. H., Yu, B., Zhao, W., and Liu, H. M. (2020). Discovery of [1, 2, 4] triazolo [1, 5-a] pyrimidines derivatives as potential anticancer agents. European Journal of Medicinal Chemistry, 211, 113108.
Xu, C., Zhou, W., Dong, G., Qiao, H., Peng, J., Jia, P., Li, Y., Liu, H., Sun, K., and Zhao, W. (2020). Novel [1, 2, 3] triazolo [4, 5-d] pyrimidine derivatives containing hydrazone fragment as potent and selective anticancer agents. Bioorganic Chemistry, 105, 104424.
El-Hag, F. A. A., Abdel-Hafez, N. A., Abbas, E. M. H., El-Manawaty, M. A., and El-Rashedy, A. A. (2019). Synthesis and antitumor activity of some new fused heterocyclic compounds. Russian Journal of General Chemistry, 89, 128-137.
Saundane, A. R., Halu, A., and Kirankumar, N. (2017). Synthesis and biological evaluation of some novel indole analogues containing triazolopyrimidine moiety. Monatshefte für Chemie - Chemical Monthly, 148, 1497-1511.
Abd El-Aleam, R. H., George, R. F., Hassan, G. S., and Abdel-Rahman, H. M. (2020). Synthesis and biological evaluation of some novel indole analogues containing triazolopyrimidine moiety. Bioorganic Chemistry, 94, 103411.
Al-Harthy, T., Zoghaib, W. M., Stoll, R., and Abdel-Jalil, R. (2018). Design, synthesis, and antimicrobial evaluation of novel 2-arylbenzothiazole analogs bearing fluorine and piperazine moieties. Monatshefte für Chemie, 149, 645-651.
Lahmidi, S., Anouar, E. H., El Hamdaoui, L., Ouzidane, Y., Kaur, M., Jasinski, J. P., Sebbar, N. K., Essassi, E. M., and El Moussaouiti, M. (2019). Synthesis, crystal structure, spectroscopic characterization, Hirshfeld surface analysis, DFT calculations, and antibacterial activity of ethyl 2-(4-vinylbenzyl)-2-(5-methyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-yl)-3-(4-vinylphenyl)propanoate. Journal of Molecular Structure, 1191, 66-75.
Gami, S. P., Vilapara, K. V., Khunt, H. R., Babariya, J. S., and Naliyapara, Y. T. (2014). Synthesis and antimicrobial activities of some pyrazoline derivatives. International Letters of Chemistry, Physics and Astronomy, 11, 127-134.
Mabkhoot, Y. N., Alatibi, F., El-Sayed, N. N. E., Kheder, N. A., and Al-Showman, S. S. (2016). Synthesis and structure-activity relationship of some new thiophene-based heterocycles as potential antimicrobial agents. Molecules, 21, 1036-1036.
Phillips, M. A., White, K. L., Kokkonda, S., Deng, X., White, J., El Mazouni, F., Marsh, K., Manjalanagara, K. D. R., and Rudra, K. R. (2016). Triazolopyrimidine-based dihydroorotate dehydrogenase inhibitors with potent and selective activity against the malaria parasite Plasmodium falciparum. ACS Infectious Diseases, 2, 945-957.
Low, Y. S., Garcia, M. D., Lonhienne, T., Fraser, J. A., Schenk, G., and Guddat, L. W. (2021). Triazolopyrimidine herbicides are potent inhibitors of Aspergillus fumigatus acetohydroxyacid synthase and potential antifungal drug leads. Scientific Reports, 11, 21055.
Borthakur, S. K., Borthakur, S., Goswami, D., Boruah, P., and Kalita, P. K. (2016). Synthesis and antifungal activities of some new 5,7‐disubstituted [1,2,4]triazolo[1,5‐a]pyrimidin‐6‐one derivatives. Journal of Heterocyclic Chemistry, 53, 2079-2083.
Pogaku, V., Krishnan, R., and Basavoju, S. (2021). Synthesis and antifungal activities of some new 5,7‐disubstituted [1,2,4]triazolo[1,5‐a]pyrimidin‐6‐one derivatives. Research on Chemical Intermediates, 47, 551-571.
DOI: https://doi.org/10.17509/ijost.v10i1.80301
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Universitas Pendidikan Indonesia

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Science and Technology is published by UPI.
View My Stats