Integration of Water Heating Systems with Car Air Conditioning Systems: A Bibliometric Analysis, Lab-scale Investigation, and Potential Applications
Abstract
Keywords
Full Text:
PDFReferences
Bhatti, M. S. (1999). Evolution of automotive air conditioning: Riding in comfort: Part II. Ashrae Journal, 41(9), 44-52.
Setiyo, M., Soeparman, S., Wahyudi, S., and Hamidi, N. (2018). The Alternative Way to Drive the Automobile Air-Conditioning, Improve Performance, and Mitigate the High Temperature: A Literature Overview. Periodica Polytechnica Transportation Engineering, 46(1), 36-41.
Setiyo, M., Widodo, N., Purnomo, B. C., Munahar, S., Rahmawan, M. A., and Luthfi, A. (2019). Harvesting cooling effect on LPG-fueled vehicles for mini cooler: A lab-scale investigation. Indonesian Journal of Science and Technology, 4(1), 39-47.
Setyawan, A. (2020). Effect of room temperature setting on the cooling load, supply air quantity, and apparatus dew point. Journal of Engineering Science and Technology, 15(3), 1799-1814.
Setiyo, M., Waluyo, B., and Hamidi, N. (2020). analysis of evaporator effectiveness on 1/2 cycle refrigeration systems: A case study on LPG fueled vehicles. Jurnal Teknologi (Sciences & Engineering), 82(3).
Setiyo, M., Waluyo, B., Widodo, N., Rochman, M. L., and Raharja, I. B. (2020). Performance of mini air cooler on parked car under direct sunlight. Journal of Physics: Conference Series, 1517, 12002.
Purnomo, B. C., Setiawan, I. C., and Nugroho, H. A. (2020). Study on cooling system for parked cars using mini air cooler and exhaust fan. Automotive Experiences, 3(2), 81-88.
Setiyo, M., Waluyo, B., Widodo, N., Rochman, M. L., Munahar, S., and Fatmaryanti, S. D. (2021). Cooling effect and heat index (HI) assessment on car cabin cooler powered by solar panel in parked car. Case Studies in Thermal Engineering, 28, 101386.
Setiyo, M., Purnomo, B. C., Waluyo, B., Munahar, S., Rochman, M. L., Saleh, A. R., and Samuel, O. D. (2022). Cooling power characteristics of half-cycle refrigeration system in LPG fuelled vehicles by auxiliary chiller as heat exchanger. Thermal Science and Engineering Progress, 27, 101145.
Munahar, S., Purnomo, B. C., Izzudin, M., Setiyo, M., and Saudi, M. M. (2022). Vehicle air conditioner (vac) control system based on passenger comfort: a proof of concept. IIUM Engineering Journal, 23(1), 370-383.
Waluyo, B., Setiyo, M., Purnomo, B. C., Rochman, M. L., Habibi, I., Saleh, A. R., and Kolakoti, A. (2022). Cooling effect characteristic of the novel half-cycle refrigeration system on a liquefied petroleum gas (LPG) fueled vehicle. Thermal Science and Engineering Progress, 34, 101405.
Kivevele, T. (2022). Propane (HC – 290) as an alternative refrigerant in the food transport refrigeration sector in Southern Africa – a Review. Automotive Experiences, 5(1), 75–89.
Zawawi, N. N. M., Azmi, W. H., Ghazali, M. F., and Ramadhan, A. I. (2022). Performance optimization of automotive air-conditioning system operating with Al2O3-SiO2/PAG composite nanolubricants using Taguchi Method. Automotive Experiences, 5(2), 121-136.
Bolaji, B. O., Bolaji, D. O., and Amosun, S. T. (2023). Energy and cooling performance of carbon-dioxide and hydrofluoroolefins blends as eco-friendly substitutes for R410A in air-conditioning systems. Mechanical Engineering for Society and Industry, 3(1), 35–46.
Abam, F. I., Ndukwu, M. C., Inah, O. I., Uchechukwu, O. D., Setiyo, M., Samuel, O. D., and Uche, R. (2023). Thermodynamic modelling of a novel solar-ORC with bottoming ammonia-water absorption cycle (SORCAS) powered by a vapour compression refrigeration condensate for combined cooling and power. Mechanical Engineering for Society and Industry, 3(2), 93-104.
Sukarno, R., Premono, A., Gunawan, Y., Wiyono, A., & Lubi, A. (2024). Experimental investigation of using thermoelectric coolers under different cooling methods as an alternative air conditioning system for car cabin. Automotive Experiences, 7(2), 284-298.
Lee, M. Y., and Lee, D.-Y. (2013). Review on conventional air conditioning, alternative refrigerants, and co2 heat pumps for vehicles. Advances in Mechanical Engineering, 5, 713924.
Vali, S. S., Saboor, S., Rajan, S. P., and Babu, T. A. (2020). Automotive air-conditioning system technology: a review. Progress in Industrial Ecology, an International Journal, 14(2), 162-184.
Vashisht, S., and Rakshit, D. (2021). Recent advances and sustainable solutions in automobile air conditioning systems. Journal of Cleaner Production, 329, 129754.
Andrew Pon Abraham, J. D., and Mohanraj, M. (2019). Thermodynamic performance of automobile air conditioners working with R430A as a drop-in substitute to R134a. Journal of Thermal Analysis and Calorimetry, 136(5), 2071–2086.
Direk, M., Mert, M. S., Soylu, E., and Yüksel, F. (2019). Experimental investigation of an automotive air conditioning system using R444A and R152a refrigerants as alternatives of R134a. Journal of Mechanical Engineering, 65(4), 212–218.
Khatoon, S., and Karimi, M. N. (2023). Thermodynamic analysis of two evaporator vapor compression refrigeration system with low GWP refrigerants in automobiles. International Journal of Air-Conditioning and Refrigeration, 31(1), 1–17.
Harby, K. (2017). Hydrocarbons and their mixtures as alternatives to environmental unfriendly halogenated refrigerants: An updated overview. Renewable and Sustainable Energy Reviews, 73, 1247–1264.
Ahmed, H. A., Megahed, T. F., Mori, S., Nada, S., and Hassan, H. (2023b). Performance investigation of new design thermoelectric air conditioning system for electric vehicles. International Journal of Thermal Sciences, 191, 108356.
Schweizer, M., Stöckl, M., Tutunaru, R., and Holzhammer, U. (2023). Influence of heating, air conditioning and vehicle automation on the energy and power demand of electromobility. Energy Conversion and Management: X, 20, 100443.
Ahmed, H. A., Megahed, T. F., Mori, S., Nada, S., and Hassan, H. (2023a). Novel design of thermo-electric air conditioning system integrated with PV panel for electric vehicles: Performance evaluation. Applied Energy, 349, 121662.
Wang, J., and Ruan, L. (2023). Performance investigation of integrated thermal management system based on a pumped two-phase cooling system for electric vehicles. Journal of Energy Storage, 72, 107922.
Yeon Kim, J., Kim, J., Jeong, H., Take Kim, G., Jung Park, J., and Kim, T. (2024). Enhancement of electric vehicle air-conditioning system with dual condensers. Applied Thermal Engineering, 236, 121459.
Sevilgen, G., Kiliç, M., Bayram, H., Başak, E., and Dursun, H. (2023). The investigation of the innovative hybrid heat pump system designed and prototyped for heating process of electric vehicles. Alexandria Engineering Journal, 68, 417–435.
Wang, F., Wu, W., Zhu, Q., Li, K., and Zhang, H. (2023). Experimental study of electronic expansion valve opening on the performance of electric vehicle heat pump system at different compressor speeds. International Journal of Refrigeration, 149, 94–104.
Penning, A. K., and Weibel, J. A. (2023). Assessing the influence of glass properties on cabin solar heating and range of an electric vehicle using a comprehensive system model. Applied Energy, 339, 120973.
Zong, S., Wang, W., Yin, X., Song, Y., Huang, L., Cao, F., Zhang, Z., and Wang, B. (2023). Evaluation of energy-saving potential and cabin thermal comfort for automobile CO2 heat pump. Applied Thermal Engineering, 228, 120339.
Lei, Q., Song, X., Yu, B., Liu, C., Shi, J., and Chen, J. (2023). Energetic performance evaluation of an automotive CO2 air conditioning system with a dual-evaporator configuration. International Journal of Refrigeration, 152, 356–368.
Lee, J., Kim, J., Park, J., and Bae, C. (2013). Effect of the air-conditioning system on the fuel economy in a gasoline engine vehicle. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 227(1), 66–77.
Vale, J. P., Alves, P. G., Neves, S. F., Nybo, L., Flouris, A. D., and Mayor, T. S. (2022). Analysis of the dynamic air conditioning loads, fuel consumption and emissions of heavy-duty trucks with different glazing and paint optical properties. International Journal of Sustainable Transportation, 16(10), 887–900.
Sharif, M. Z., Azmi, W. H., Zawawi, N. M., Mamat, R., and Shaiful, A. I. M. (2019). Energy and exergy analysis of compact automotive air conditioning (AAC) system. In IOP Conference Series: Materials Science and Engineering, 469(1), 012042.
Mendes, A. de C. A., Pujatti, F. J. P., and Cortez, M. F. B. (2022). Conceptual Design of an Adsorption Refrigeration System Applied to Vehicles. International Journal of Refrigeration, 135, 60–74.
Chauhan, P. R., Kaushik, S. C., and Tyagi, S. K. (2022). Current status and technological advancements in adsorption refrigeration systems: A review. Renewable and Sustainable Energy Reviews, 154, 111808.
Vasta, S. (2023). Adsorption Air-Conditioning for Automotive Applications: A Critical Review. Energies, 16(14), 5382.
Golparvar, B., and Niazmand, H. (2018). Adsorption cooling systems for heavy trucks A/C applications driven by exhaust and coolant waste heats. Applied Thermal Engineering, 135, 158–169.
Maeda, S., Thu, K., Maruyama, T., and Miyazaki, T. (2018). Critical review on the developments and future aspects of adsorption heat pumps for automobile air conditioning. Applied Sciences, 8(11), 2061.
Miranda, Á. G., Chen, T. S., and Hong, C. W. (2013). Feasibility study of a green energy powered thermoelectric chip based air conditioner for electric vehicles. Energy, 59, 633–641.
Pang, W., Yu, H., Zhang, Y., and Yan, H. (2019). Solar photovoltaic based air cooling system for vehicles. Renewable Energy, 130, 25–31.
Ranaweera, W. M. M. S., Nadhira, K. F., Rathnayake, R. P. L., Alahakoon, P. M. K., and Kumara, W. G. C. W. (2019). Feasibility Evaluation of a solar powered automobile air-conditioning system. 4th International Conference on Information Technology Research (ICITR), 2019, 1–6.
Setiyo, M., Purnomo, B. C., Waluyo, B., Syaka, D. R. B., and Hamidi, N. (2018). Refrigeration effect and energy efficiency ratio (EER) calculation of 1/2 cycle refrigeration system on LPG-fueled vehicles. In IOP Conference Series: Materials Science and Engineering, 403(1), 012087.
Setiyo, M., Soeparman, S., Hamidi, N., Wahyudi, S., and Hanafi, M. (2017). Numerical study on cooling effect potential from vaporizer device of LPG vehicle. Journal of Engineering Science and Technology, 12(7), 1766–1779.
Bentrcia, M., Alshitawi, M., and Omar, H. (2018). Developmens of alternative systems for automotive air conditioning - A review. Journal of Mechanical Science and Technology, 32(4), 1857–1867.
Setiyo, M., Rusdjijati, R., Habibi, I., Rochman, M. L., Purnomo, B. C., Pertiwi, F. D., Waluyo, B., Ismail, R., and Kolakoti, A. (2024). Vapor compression refrigeration system with air and water cooled condenser: Analysis of thermodynamic behavior and energy efficiency ratio. Teknomekanik, 7(2), 112–125.
Al Husaeni, D. F., and Nandiyanto, A. B. D. (2021). Bibliometric Using Vosviewer with Publish or Perish (using Google Scholar data): From Step-by-step Processing for Users to the Practical Examples in the Analysis of Digital Learning Articles in Pre and Post Covid-19 Pandemic. ASEAN Journal of Science and Engineering, 2(1), 19–46.
Rochman, S., Rustaman, N., Ramalis, T. R., Amri, K., Zukmadini, A. Y., Ismail, I., and Putra, A. H. (2024). How bibliometric analysis using VOSviewer based on artificial intelligence data (using ResearchRabbit Data): Explore research trends in hydrology content. ASEAN Journal of Science and Engineering, 4(2), 251–294.
Al Husaeni, D. N., and Al Husaeni, D. F. (2022). How to calculate bibliometric using vosviewer with publish or perish (using scopus data): Science education keywords. Indonesian Journal of Educational Research and Technology, 2(3), 247-274.
Azizah, N. N., Maryanti, R., and Nandiyanto, A. B. D. (2021). How to search and manage references with a specific referencing style using google scholar: From step-by-step processing for users to the practical examples in the referencing education. Indonesian Journal of Multidiciplinary Research, 1(2), 267–294.
Pertiwi, F. D., Anindito, D. C., Habibi, I., Saifudin, Munahar, S., Purnomo, B. C., Fatimah, Y. A., Waluyo, B., and Setiyo, M. (2024). A New Approach to Measuring Institutional and Researcher Contributions to the SDGs: Combining Data from Elsevier SciVal and VOSviewer. Advance Sustainable Science Engineering and Technology, 6(4), 02404024.
Setyanansyach, D. I., Setiyo, M., and Raja, T. (2023). Review and Bibliometric Analysis of Biogas Power Plants in Indonesia. Advance Sustainable Science, Engineering and Technology (ASSET), 5(3), 2303015.
Nandiyanto, A. B. D., Syazwany, A. N., Syarafah, K. N., Syuhada, T. S., Ragadhita, R., Piantari, E., Farobie, O., and Bilad, M. R. (2024). Utilization of bamboo powder in the production of non-asbestos brake pads: Computational bibliometric literature review analysis and experiments to support sustainable development goals (SDGs). Automotive Experiences, 7(1), 111–131.
Setiyo, M., Yuvenda, D., and Samuel, O. D. (2021). The Concise Latest Report on the Advantages and Disadvantages of Pure Biodiesel (B100) on Engine Performance: Literature Review and Bibliometric Analysis. Indonesian Journal of Science and Technology, 6(3), 469–490.
Nandiyanto, A. B. D., Ragadhita, R., Setiyo, M., Al Obaidi, A. S. M., and Hidayat, A. (2023). Particulate matter emission from combustion and non-combustion automotive engine process: Review and computational bibliometric analysis on its source, sizes, and health and lung impact. Automotive Experiences, 6(3), 599–623.
Shieddieque, A. D., Rahayu, I., Hidayat, S., and Laksmono, J. A. (2023). Recent development in LiFePO4 surface modifications with carbon coating from originated metal-organic frameworks (MOFs) to improve the conductivity of cathode for lithium-ion batteries: A review and bibliometrics analysis. Automotive Experiences, 6(3), 438–451.
Setiyo, M., and Rochman, M. L. (2023). Literature review: An effective method for identifying science and technology updates. Mechanical Engineering for Society and Industry, 3(Special issue), 114–118.
Chen, J., Min, K., and Li, F. (2011). Comparison of performance between R290 and R417A in heat pump air conditioning water heater combination. Advanced Materials Research, 243, 4918–4922.
Aziz, A., Satria, A. B., and Mainil, R. I. (2015). Experimental study of split air conditioner with and without trombone coil condenser as air conditioning water heater. International Journal of Automotive and Mechanical Engineering (IJAME), 12, 3043–3057.
Sivaram, A. R., Karuppasamy, K., Rajavel, R., and Arun Prasad, B. (2015). Experimental investigations on the performance of a water heater using waste heat from an air conditioning system. Indian Journal of Science and Technology, 8(36), 1–6.
Wiriyasart, S., and Kaewluan, S. (2024). Waste heat recovery of air conditioning on thermal efficiency enhancement of water heater. Thermal Science and Engineering Progress, 47, 102296.
Aziz, A., Samri, A., Mainil, R. I., and Mainil, A. K. (2020). Performance of air source air conditioning water heater using trombone coil dummy condenser with different diameter and pipe length. Journal of Mechanical Engineering and Sciences, 14(2), 6743–6752.
Nhựt, L. M., and Thái, N. V. (2019). A study on waste heat recovery of chilled water air conditioning system to improve performance of heat pump water heater. Tạp Chí Khoa Học Và Công Nghệ Đại Học Đà Nẵng, 17(5), 10–14.
Paliwal, M., Warghane, J., Dhanvij, K., and Telrandhe, P. R. G. (2019). Design & Development of Air Conditioning cum Refrigerator cum Water. International Journal for Scientific Research & Development, 6(12), 598–601.
Morrow, J. A., and Derby, M. M. (2022). Flow condensation heat transfer and pressure drop of R134a alternative refrigerants R513A and R450A in 0.95-mm diameter minichannels. International Journal of Heat and Mass Transfer, 192, 122894.
El-Sayed Mosaad, M., Al-Hajeri, M., Al-Ajmi, R., and Koliub, A. M. (2009). Heat transfer and pressure drop of R-134a condensation in a coiled, double tube. Heat and Mass Transfer/Waerme- Und Stoffuebertragung, 45(8), 1107–1115.
Zhang, J., Elmegaard, B., and Haglind, F. (2021). Condensation heat transfer and pressure drop characteristics of zeotropic mixtures of R134a/R245fa in plate heat exchangers. International Journal of Heat and Mass Transfer, 164, 120577.
Singh, V., Kukreja, R., and Sehgal, S. S. (2022). Two-phase frictional pressure drop of R134a and R410A condensing inside multiport rectangular microchannels with different aspect ratio. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 44(1), 306–320.
Datt, P. (2011). Latent heat of vaporization/condensation. Encyclopedia of snow, Ice and Glaciers, 5, 248-253.
Opitz-Stapleton, S., Sabbag, L., Hawley, K., Tran, P., Hoang, L., and Nguyen, P. H. (2016). Heat index trends and climate change implications for occupational heat exposure in Da Nang, Vietnam. Climate Services, 2, 41–51.
Augustin, K., Gerike, R., Martinez Sanchez, M. J., & Ayala, C. (2014). Analysis of intercity bus markets on long distances in an established and a young market: The example of the U.S. and Germany. Research in Transportation Economics, 48, 245–254.
Manzolli, J. A., Trovao, J. P., and Antunes, C. H. (2022). A review of electric bus vehicles research topics–Methods and trends. Renewable and Sustainable Energy Reviews, 159, 112211.
Glotz-Richter, M., and Koch, H. (2016). Electrification of Public Transport in Cities (Horizon 2020 ELIPTIC Project). Transportation Research Procedia, 14, 2614–2619.
Broatch, A., Olmeda, P., Bares, P., and Aceros, S. (2022). Integral thermal management studies in winter conditions with a global model of a battery-powered electric bus. Energies, 16(1), 168.
Gaggero, A. A., Ogrzewalla, L., and Bubalo, B. (2019). Pricing of the long-distance bus service in Europe: The case of Flixbus. Economics of Transportation, 19, 100120.
Moslem, S., Ghorbanzadeh, O., Blaschke, T., and Duleba, S. (2019). Analysing stakeholder consensus for a sustainable transport development decision by the fuzzy AHP and interval AHP. Sustainability, 11(12), 3271.
Setiyo, M., and Waluyo, B. (2021). Captain Seat: Smart Solution for Physical Distancing on Buses During the Covid-19 Pandemic. Automotive Experiences, 4(1), 1–4.
Rusdjijati, R., Subrata, S. A., Pambuko, Z. B., Setiyo, M., and Noga, M. (2022). Strategy for safe passenger transport during the covid-19 pandemic: From review to recommendation. Automotive Experiences, 5(2), 90–102.
Taufik, M., Hudiono, H., Rakhmania, A. E., Perdana, R. H. Y., and Sari, A. S. (2021). An internet of things based intercity bus management system for smart city. International Journal of Computing and Digital Systems, 10(1), 1219–1226.
Park, J., and Kim, G. (2022). Social Efficiency of Public Transportation Policy in Response to COVID-19: Model Development and Application to Intercity Buses in Seoul Metropolitan Area. International Journal of Environmental Research and Public Health, 19(19), 12060.
Ozdagoglu, A., Zeynep Oztas, G., Kemal Keles, M., and Genc, V. (2022). A comparative bus selection for intercity transportation with an integrated PIPRECIA & COPRAS-G. Case Studies on Transport Policy, 10(2), 993–1004.
DOI: https://doi.org/10.17509/ijost.v10i1.80966
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Universitas Pendidikan Indonesia

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Science and Technology is published by UPI.
View My Stats