H2O2-Modified Geopolymers as Integrated Adsorbent-Catalysts for FFA Removal and Biodiesel Production from Crude Palm Oil

Nelly Wahyuni, Thamrin Usman, M. Ilham Ramadhan, Ismail Astar

Abstract


This study investigated hydrogen peroxide (H₂O₂)-modified geopolymers as integrated adsorbent catalysts for biodiesel production from crude palm oil (CPO). Geopolymers were synthesized using metakaolin and modified with varying H₂O₂ concentrations (0-30 wt%). Material characterization through XRD, FTIR, XRF, and BET analysis showed that H₂O₂ modification enhanced porosity and surface area, with modified samples showing a 13-fold increase in specific surface area (9.7068 m²/g) compared to unmodified geopolymer (0.7312 m²/g). The optimal H₂O₂-modified geopolymer (Gpm-3) demonstrated superior performance in separated and combined processes. The separated process achieved 85.38% FFA removal efficiency and 100% biodiesel yield. The combined single-step process maintained impressive performance with 55% FFA removal and 96.47% biodiesel yield. These results highlight the potential of H₂O₂-modified geopolymers as cost-effective, sustainable materials for integrated FFA removal and biodiesel production from CPO.

Keywords


Adsorption; Biodiesel production; Crude palm oil; H₂O₂-modified geopolymer; Integrated adsorbent-catalyst

Full Text:

PDF

References


Juera-Ong, P., Pongraktham, K., Oo, Y. M., and Somnuk, K. (2022). Reduction in free fatty acid concentration in sludge palm oil using heterogeneous and homogeneous catalysis: Process optimization, and reusable heterogeneous catalysts. Catalysts, 12(9), 1-21.

Clowutimon, W., Kitchaiya, P., and Assawasaengrat, P. (2011). Adsorption of free fatty acid from crude palm oil on magnesium silicate derived from rice husk. Engineering Journal, 15(3), 15-26.

Yu, Q., Li, X., Wang, Z., and Xue, J. (2022). Characterization and performance evaluation of metakaolin-based geopolymer foams obtained by adding palm olein as the foam stabilizer. Materials, 15(10), 3570.

Astar, I., Usman, T., Wahyuni, N., Rudiyansyah, R., and Alimuddin, A. H. (2017). Bifunctional heterogeneous catalysts from oil palm empty fruit bunches ash and alum for biodiesel synthesis simultaneously. AIP Conference Proceedings, 1823(1), 1-5.

Usman, T., Wahyuni, N., Astar, I., Yustira, Y., Alimuddin, A. H., and Rahmalia, W. (2019). Tin-empty palm bunch ash impregnated zeolite as suitable catalyst for simultaneous transesterification-esterification reaction of palm oil. IOP Conference Series: Materials Science and Engineering, 599(1), 120020.

Qiao, Y., Li, X., Bai, C., Li, H., Yan, J., Wang, Y., and Colombo, P. (2021). Effects of surfactants/stabilizing agents on the microstructure and properties of porous geopolymers by direct foaming. Journal of Asian Ceramic Societies, 9(1), 412-423.

Gea, S., Widati, A. A., Syukri, S., Eddiyanto, E., anddWardana, D. (2024). Esterification of palm fatty acid distillate to methyl ester using amberlyst catalyst in a semi-continuous reactor. AIP Conference Proceedings, 3026(1), 1-9.

Hasanudin, H., Putri, Q. U., Agustina, T. E., and Hadiah, F. (2022). Esterification of free fatty acid in palm oil mill effluent using sulfated carbon-zeolite composite catalyst. Pertanika Journal of Science and Technology, 30(1), 377-395.

Deshwal, S., Singh, B., Ganeshan, I., and Tarannum, H. (2019). Physico-mechanical flammability and leachability characteristics of fly ash/slag based foamed geo polymer concrete blocks. Indian Journal of Engineering and Materials Sciences, 26, 390-402.

Pereira, Y. S., Lameiras, F. S., and Dos Santos, A. M. M. (2023). Geopolymer foam reinforced with iron ore flotation tailing for potassium adsorption and controlled release in water. ACS omega, 8(48), 45735-45749.

Papa, E., Landi, E., Miccio, F., and Medri, V. (2022). K2O-metakaolin-based geopolymer foams: production, porosity characterization and permeability test. Materials, 15(3), 1008.

Nugraheni, I. K., Nuryati, N., Persada, A. A. B., Triyono, T., and Trisunaryanti, W. (2021). Impregnated zeolite as catalyst in esterification treatment from high free fatty acids palm oil Mill Effluent. Jurnal Rekayasa Kimia and Lingkungan, 16(1), 19-27.

Boros, A., and Korim, T. (2022). Development of geopolymer foams for multifunctional applications. Crystals, 12(3), 386.

Ismaila, A., Saimon, N. N., Jusoh, M., and Zakaria, Z. Y. (2017). Adsorption of free fatty acid in biodiesel from palm fatty acid distillate using KOH-activated starch. Chemical Engineering, 56, 619-624.

Bai, C., and Colombo, P. (2017). High-porosity geopolymer membrane supports by peroxide route with the addition of egg white as surfactant. Ceramics International, 43(2), 2267-2273.

Petlitckaia, S., Vincente, J., and Poulesquen, A. (2021). Characterization of a geopolymer foam by X-ray tomography. Frontiers in Chemistry, 9, 754355.

Radhi, M. S., Al-Ghaban, A. M., and Al-Hydary, I. A. (2021). RSM optimizing the characteristics of metakaolin based geopolymer foam. Journal of Physics: Conference Series, 1973(1), 012151.

Narenji-Sani, F., Tayebee, R., and Chahkandi, M. (2020). New task-specific and reusable ZIF-like grafted H6P2W18O62 catalyst for the effective esterification of free fatty acids. ACS omega, 5(17), 9999-10010.

Guo, L., Gao, C., and Xie, W. (2022). Fabrication of heterogeneous H6PV3MoW8O40/AC-Ag catalyst for biodiesel production from low-quality oils. Fuel, 2022, 1-10.

Li, J., Mailhiot, S., Alzeer, M. I., Luukkonen, T., Kantola, A. M., Telkki, V. V., and Kinnunen, P. (2024). Impact of NH4OH treatment on the ion exchange and pore characteristics of a metakaolin-based geopolymer. RSC Advances, 14(28), 19935-19944.

Talukder, M. R., Wu, J. C., Lau, S. K., Cui, L. C., Shimin, G., and Lim, A. (2009). Comparison of novozym 435 and amberlyst 15 as heterogeneous catalyst for production of biodiesel from palm fatty acid distillate. Energy and Fuels, 23(1), 1-4.

Balczár, I., Boros, A., Kovács, A., and Korim, T. (2022). Foamed geopolymer with customized pore structure. Chemical Industry and Chemical Engineering Quarterly, 28(4), 287-296.

Indrayanah, S., Marsih, I. N., and Murwani, I. K. (2017). Methyl ester production via heterogeneous acid-catalyzed simultaneous transesterification and esterification reactions. IOP Conference Series: Materials Science and Engineering, 202(1), 012069.

Kim, K. W., Lim, H. M., Yoon, S. Y., and Ko, H. (2022). Fast-curing geopolymer foams with an enhanced pore homogeneity derived by hydrogen peroxide and sodium dodecyl sulfate surfactant. Minerals, 12(7), 821.

Indrayanah, S., Marsih, I. N., and Murwani, I. K. (2018). Synthesis, characterization and catalytic evaluation of zinc fluorides for biodiesel production. Journal of the Korean Chemical Society, 62(1), 7-13.

Martínez Gil, J. M., Reyes, R. V., Bastidas-Barranco, M., Giraldo, L., and Moreno-Piraján, J. C. (2022). Biodiesel production from transesterification with lipase from pseudomonas cepacia immobilized on modified structured metal organic materials. ACS omega, 7(46), 41882-41904.

Xie, W., Gao, C., and Wang, H. (2020). Biodiesel production from low-quality oils using heterogeneous cesium salts of vanadium-substituted polyoxometalate acid catalyst. Catalysts, 10(9), 1060.

Hayyan, A., Mjalli, F. S., Hayyan, M., Alnashef, I. M., and Mirghani, M. E. (2012). Utilizing ultrasonic energy for reduction of free fatty acids in crude palm oil. African Journal of Biotechnology, 11(61), 12510-12517.

Sepúlveda, J. H., Vera, C. R., Yori, J. C., Badano, J. M., Santarosa, D., and Mandelli, D. (2011). H3PW12O40 (HPA), an efficient and reusable catalyst for biodiesel production related reactions: Esterification of oleic acid and etherification of glycerol. Química Nova, 34, 601-606.

Giraldo, L., Gómez-Granados, F., and Moreno-Piraján, J. C. (2023). Biodiesel production using palm oil with a MOF-lipase B biocatalyst from Candida Antarctica: A kinetic and thermodynamic study. International Journal of Molecular Sciences, 24(13), 10741.

Cilla, M. S., Morelli, M. R., and Colombo, P. (2014). Open cell geopolymer foams by a novel saponification/peroxide/gelcasting combined route. Journal of the European Ceramic Society, 34(12), 3133-3137.

Dal Pozzo, D. M., Dos Santos, J. A. A., Júnior, E. S., Santos, R. F., Feiden, A., de Souza, S. N. M., and Burgardt, I. (2019). Free fatty acids esterification catalyzed by acid Faujasite type zeolite. RSC advances, 9(9), 4900-4907.

Usman, T., Wahyuni, N., Ramadani, M. I., Nainggolan, D. D. J., and Astar, I. Adsorpsi warna air PDAM secara kontinu menggunakan metakaolin. Jurnal Ilmu Lingkungan, 22(6), 1554-1561.

López, F. J., Sugita, S., Tagaya, M., and Kobayashi, T. (2014). Metakaolin-based geopolymers for targeted adsorbents to heavy metal ion separation. Journal of Materials Science and Chemical Engineering, 2(7), 16-27.

Gupta, P., Nagpal, G., and Gupta, N. (2021). Fly ash-based geopolymers: An emerging sustainable solution for heavy metal remediation from aqueous medium. Beni-Suef University Journal of Basic and Applied Sciences, 10(1), 89-118.

Roviello, G., Chianese, E., Ferone, C., Ricciotti, L., Roviello, V., Cioffi, R., and Tarallo, O. (2019). Hybrid geopolymeric foams for the removal of metallic ions from aqueous waste solutions. Materials, 12(24), 4091.

Paparo, R., Di Serio, M., Roviello, G., Ferone, C., Trifuoggi, M., Russo, V., and Tarallo, O. (2024). Geopolymer-based materials for the removal of ibuprofen: A Preliminary study. Molecules, 29(10), 2210.

Saeed, A., Najm, H. M., Hassan, A., Sabri, M. M. S., Qaidi, S., Mashaan, N. S., and Ansari, K. (2022). Properties and applications of geopolymer composites: A review study of mechanical and microstructural properties. Materials, 15(22), 8250.

Duxson, P., Lukey, G. C., Separovic, F., and Van Deventer, J. S. J. (2005). Effect of alkali cations on aluminum incorporation in geopolymeric gels. Industrial and Engineering Chemistry Research, 44(4), 832-839.

Rovnaník, P. (2010). Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer. Construction and Building Materials, 24(7), 1176-1183.

Xu, H., and Van Deventer, J. S. J. (2000). The geopolymerisation of alumino-silicate minerals. International journal of mineral processing, 59(3), 247-266.

Fang, Y., Yang, L., Rao, F., Zhang, K., Qin, Z., Song, Z., and Na, Z. (2024). Behaviors and Mechanisms of adsorption of MB and Cr (VI) by geopolymer microspheres under single and binary systems. Molecules, 29(7), 1560.

Fitriani, E., and Purbasari, A. (2021). Application of low-cost mesoporous geopolymer for dye waste removal. IOP Conference Series: Materials Science and Engineering, 1053, (1), 012002.

Ramos, F. J. T. V., Vieira, M. D. F. M., Tienne, L. G. P., and de Oliveira Aguiar, V. (2020). Evaluation and characterization of geopolymer foams synthesized from blast furnace with sodium metasilicate. Journal of Materials Research and Technology, 9(5), 12019-12029.

Onojake, M. C., Odieka, A. E., Obuzor, G. U., and Chikwe, T. N. X-ray Fluorescence analysis of geopolymer produced from spent fluid catalytic cracking catalyst and Kaolin. Research Journal of Engineering Sciences, 10(3), 1-6.

Arıöz, E., and Büke, G. B. (2021). Removal of methylene blue from aqueous solutions with fly ash based geopolymer foam. Avrupa Bilim ve Teknoloji Dergisi, (28), 1437-1441.

Seelam, P. K., Sreenivasan, H., Ojala, S., Pitkäaho, S., Laitinen, T., Niu, H., and Illikainen, M. (2021). Modified geopolymers as promising catalyst supports for abatement of dichloromethane. Journal of Cleaner Production, 280, 124584.

Ibrahim, M., Wan Ibrahim, W. M., Al Bakri Abdullah, M. M., Sauffi, A. S., and Ahmad, R. (2024). Hydrogen peroxide modification enhances the ability of metakaolin based alkali activated materials adsorbent to remove the Ni2+ Ions. Archives of Metallurgy and Materials, 69(4), 1425-1430.

Purbasari, A., Ariyanti, D., and Sumardiono, S. (2020). Preparation and application of fly ash-based geopolymer for heavy metal removal. AIP Conference Proceedings, 2197(1), 1-5.

Purbasari, A., Ariyanti, D., and Fitriani, E. (2023). Adsorption of anionic and cationic dyes from aqueous solutions on fly ash-based porous geopolymer. Global NEST Journal, 25(3), 146-152.

Sitohang, C., Kuncaka, A., and Suratman, A. Synthesis of mesoporous silica from palm oil boiler ash (MS-POBA) with addition of methyl ester sulfonate as a template for free fatty acid adsorption from crude palm oil (CPO). Indonesian Journal of Chemistry, 24(3), 729-741.

Siahaan, A. P. (2023). Adsorption of free fatty acids from crude palm oil using calcium silicate (CaSiO3) adsorbent glycerol template. Journal of Chemical Natural Resources, 5(1), 7-12.

Putranti, M. L. T. A., Wirawan, S. K., and Bendiyasa, I. M. (2018). Adsorption of free fatty acid (FFA) in low-grade cooking oil used activated natural zeolite as adsorbent. In IOP Conference Series: Materials Science and Engineering, 299(1), 012085.

Dahlia, N., Rahmalia, W., and Usman, T. (2019). Adsorpsi asam lemak bebas pada crude palm oil menggunakan zeolit teraktivasi K2CO3. Indonesian Journal of Pure and Applied Chemistry, 2(3), 112-120.

Rosli, M. H., Siyal, A. A., Shamsuddin, R. M., and Low, A. (2022). Feasibilty of kaolin and mica as bleaching earths for the removal of organic compounds from crude palm oil. Jurnal Teknologi, 84(5), 145-154.

Jaya, N. A., Yun-Ming, L., Abdullah, M. M. A. B., and Cheng-Yong, H. (2019). Porous metakaolin geopolymers with tailored thermal conductivity. IOP Conference Series: Materials Science and Engineering, 551(1), 012088.

Sharma, S., Medpelli, D., Chen, S., and Seo, D. K. (2015). Calcium-modified hierarchically porous aluminosilicate geopolymer as a highly efficient regenerable catalyst for biodiesel production. RSC Advances, 5(80), 65454-65461.

Botti, R., Innocentini, M. D., Faleiros, T. A., Paschoalato, C. F., Mello, M. F., Franchin, G., and Colombo, P. (2022). Leachability and basicity of Na‐and K‐based geopolymer powders and lattices used as biodiesel catalysts. International Journal of Applied Ceramic Technology, 19(2), 794-802.

Saputra, E., Nugraha, M. W., Helwani, Z., Olivia, M., and Wang, S. (2018). Synthesis of geopolymer from rice husk ash for biodiesel production of Calophyllum inophyllum seed oil. IOP Conference Series: Materials Science and Engineering, 345(1), 012019.

Manurung, R., Syabri, D. K., Bestari, N. G., Anggreawan, M. D., and Siregar, A. G. (2020, May). Effect of choline hydroxide catalyst in the production of methyl ester from crude palm oil. IOP Conference Series: Materials Science and Engineering, 801(1), 012036.

Melero, J. A., Bautista, L. F., Morales, G., Iglesias, J., and Briones, D. (2009). Biodiesel production with heterogeneous sulfonic acid-functionalized mesostructured catalysts. Energy and Fuels, 23(1), 539-547.

Elias, S., Rabiu, A. M., Okeleye, B. I., Okudoh, V., and Oyekola, O. (2020). Bifunctional heterogeneous catalyst for biodiesel production from waste vegetable oil. Applied Sciences, 10(9), 3153.

Nuithitikul, K., and Hasin, W. (2014). Esterification of free fatty acids in crude palm oil using sulfated cobalt–tin mixed oxide catalysts. International Journal of Chemical Reactor Engineering, 12(1), 513-524.

Hayyan, A., Mjalli, F. S., Hashim, M. A., Hayyan, M., and AlNashef, I. M. (2013). Conversion of free fatty acids in low grade crude palm oil to methyl esters for biodiesel production using chromosulfuric acid. Bulg Chem Commun, 45(3), 394-399.

Setyaningsih, S., Utami, M., Syoufian, A., Heraldy, E., Yuwono, N. W., and Wijaya, K. (2022). Synthesis of SO42–/ZrO2 solid acid and Na2O/ZrO2 solid base catalysts using hydrothermal method for biodiesel production from low-grade crude palm oil. Indonesian Journal of Chemistry, 22(1), 17-34.




DOI: https://doi.org/10.17509/ijost.v10i1.80968

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Universitas Pendidikan Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Science and Technology is published by UPI.
StatCounter - Free Web Tracker and Counter
View My Stats