Ganciclovir-Loaded Chitosan Nanoparticles and Their Activity against HSV-1 Inducing Herpetic Retinitis

Lidya Agriningsih Haruna, La Ode Muhammad Julian Purnama, Adryan Fristiohady, Promsin Masrinoul, Jukrapun Komaikul, Kunjimas Ketsuwan, Rathapon Asasutjarit

Abstract


Herpes simplex virus (HSV)-1-induced retinitis is one of ophthalmic viral infections. It is found in some immunocompromised and elderly patients and is a cause of complete blindness. Nowadays, an intravitreal (IVT) injection of ganciclovir (GCV) is applied to treat this disease. Unfortunately, frequent IVT injections induce adverse effects in the eye. GCV-loaded chitosan nanoparticles (GCV-CS-NPs) were developed to reduce the number of IVT injections. This study developed GCV-CS-NPs and investigated their activity against HSV-1. GCV-CS-NPs were prepared using an ionic gelation method with varying formulation compositions. The particle size, polydispersity index (PDI), zeta potential, pH, drug release, and activity against the HSV-1 were investigated. The results showed GCV-CS-NPs with particle sizes of around 161 to 294 nm, moderate PDI values, and zeta potentials of between +8.0 and +18.1 mV. These properties strongly depended on the formulation compositions. The release rate of GCV from the optimized GCV-CS-NPs (3C-0.5G-1T-4.5) in the simulated vitreous humor regarding Higuchi’s model was 4.89±0.48 µg/min1/2. The IC50 against the HSV-1 was 25.12±0.02 µg/mL. 3C-0.5G-1T-4.5 could be accepted as a promising delivery system of GCV to the vitreous humor via IVT injection and had a potential for being subjected to further in vivo studies.

Keywords


Chitosan nanoparticles; Ganciclovir; Herpes simplex virus; Intravitreal injection; Retina

Full Text:

PDF

References


Bagga, B., Kate, A., Joseph, J., and Dave, V. P. (2020). Herpes simplex infection of the eye: an introduction. Community Eye Health, 33(108), 68–70.

McCormick, I., James, C., Welton, N. J., Mayaud, P., Turner, K. M. E., Gottlieb, S. L., Foster, A., and Looker, K. J. (2022). Incidence of herpes simplex virus keratitis and other ocular disease: Global review and estimates. Ophthalmic Epidemiology, 29(4), 353–362.

Choudhari, M., Nayak, K., Nagai, N., Nakazawa, Y., Khunt, D., and Misra, M. (2023). Role of mucoadhesive agent in ocular delivery of ganciclovir microemulsion: Cytotoxicity evaluation in vitro and ex vivo. International Ophthalmology, 43(4), 1153–1167.

Heikkinen, E. M., Ruponen, M., Jasper, L. M., Leppanen, J., Hellinen, L., Urtti, A., and Vellonen, K. S. (2020). Prodrug approach for posterior eye drug delivery: synthesis of novel ganciclovir prodrugs and in vitro screening with cassette dosing. Molecular Pharmaceutics, 17(6), 1945-1953.

Yu, T., Peng, R. M., Xiao, G. G., Feng, L. N., and Hong, J. (2020). Clinical evaluation of intravitreal injection of ganciclovir in refractory corneal endotheliitis. Ocular Immunology and Inflammation, 28(2), 270-280.

Verrecchia, S., El Chehab, H., Chudzinski, R., Chaperon, M., Levron, A., Agard, E., and Dot, C. (2019). Does repeated intravitreal injections impact the quality of life of patients, about 40 patients? Investigative Ophthalmology & Visual Science, 60(9), 4471-4471.

Wang, Q., Sun, C., Xu, B., Tu, J., and Shen, Y. (2018). Synthesis, physicochemical properties and ocular pharmacokinetics of thermosensitive in situ hydrogels for ganciclovir in cytomegalovirus retinitis treatment. Drug Delivery, 25(1), 59-69.

Sims, L., Ramasubramanian, A., and Steinbach-Rankins, J. M. (2018). Novel PLGA nanoparticles encapsulating melphalan for the treatment of retinoblastomas. Investigative Ophthalmology & Visual Science, 59(9), 4963-4963.

Varshochian, R., Riazi‐Esfahani, M., Jeddi‐Tehrani, M., Mahmoudi, A. R., Aghazadeh, S., Mahbod, M., and Dinarvand, R. (2015). Albuminated PLGA nanoparticles containing bevacizumab intended for ocular neovascularization treatment. Journal of Biomedical Materials Research Part A, 103(10), 3148-3156.

Canioni, R., Reynaud, F., Leite-Nascimento, T., Gueutin, C., Guiblin, N., Ghermani, N. E., and Tsapis, N. (2021). Tiny dexamethasone palmitate nanoparticles for intravitreal injection: Optimization and in vivo evaluation. International Journal of Pharmaceutics, 600, 120509.

Yang, C., Yang, J., Lu, A., Gong, J., Yang, Y., Lin, X., and Xu, H. (2022). Nanoparticles in ocular applications and their potential toxicity. Frontiers in Molecular Biosciences, 9, 931759.

Swetledge, S., Jung, J. P., Carter, R., and Sabliov, C. (2021). Distribution of polymeric nanoparticles in the eye: implications in ocular disease therapy. Journal of Nanobiotechnology, 19(1), 10.

Beach, M. A., Nayanathara, U., Gao, Y., Zhang, C., Xiong, Y., Wang, Y., and Such, G. K. (2024). Polymeric nanoparticles for drug delivery. Chemical Reviews, 124(9), 5505-5616.

Zielińska, A., Carreiró, F., Oliveira, A. M., Neves, A., Pires, B., Venkatesh, D. N., Durazzo, A., Lucarini, M., Eder, P., Silva, A. M., Santini, A., and Souto, E. B. (2020). Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology. Molecules (Basel, Switzerland), 25(16), 3731.

Weißpflog, J., Vehlow, D., Müller, M., Kohn, B., Scheler, U., Boye, S., and Schwarz, S. (2021). Characterization of chitosan with different degree of deacetylation and equal viscosity in dissolved and solid state–Insights by various complimentary methods. International Journal of Biological Macromolecules, 171, 242-261.

Popova, E. V., Tikhomirova, V. E., Beznos, O. V., Chesnokova, N. B., Grigoriev, Y. V., and Kost, O. A. (2023). Chitosan Nanoparticles: The drug delivery system to the anterior segment of the eye. Moscow University Chemistry Bulletin, 78(2), 82-88.

Burhan, A. M., Klahan, B., Cummins, W., Andrés-Guerrero, V., Byrne, M. E., O'Reilly, N. J., Chauhan, A., Fitzhenry, L., and Hughes, H. (2021). Posterior segment ophthalmic drug delivery: Role of muco-adhesion with a special focus on chitosan. Pharmaceutics, 13(10), 1685.

Goyal, S., Thirumal, D., Rana, J., Gupta, A. K., Kumar, A., Babu, M. A., and Sindhu, R. K. (2024). Chitosan based nanocarriers as a promising tool in treatment and management of inflammatory diseases. Carbohydrate Polymer Technologies and Applications, 7, 100442.

Lozano Chamizo, L., Luengo Morato, Y., Ovejero Paredes, K., Contreras Caceres, R., Filice, M., and Marciello, M. (2021). ionotropic gelation-based synthesis of chitosan-metal hybrid nanoparticles showing combined antimicrobial and tissue regenerative activities. Polymers, 13(22), 3910.

Asasutjarit, R., Sorrachaitawatwong, C., Tipchuwong, N., and Pouthai, S. (2013). Effect of formulation compositions on particle size and zeta potential of diclofenac sodium-loaded chitosan nanoparticles. International Journal of Pharmacological and Pharmaceutical Sciences, 7(9), 568-570.

Patel, R., Gajra, B., Parikh, R. H., and Patel, G. (2016). Ganciclovir loaded chitosan nanoparticles: preparation and characterization. Journal Nanomedicine Nanotechnology, 7(6), 1-8.

Albarqi, H. A., Garg, A., Ahmad, M. Z., Alqahtani, A. A., Walbi, I. A., and Ahmad, J. (2023). Recent progress in chitosan-based nanomedicine for its ocular application in glaucoma. Pharmaceutics, 15(2), 681.

Mikušová, V., and Mikuš, P. (2021). Advances in chitosan-based nanoparticles for drug delivery. International Journal of Molecular Sciences, 22(17), 9652.

Lu, Y., Zhou, N., Huang, X., Cheng, J. W., Li, F. Q., Wei, R. L., and Cai, J. P. (2014). Effect of intravitreal injection of bevacizumab-chitosan nanoparticles on retina of diabetic rats. International Journal of Ophthalmology, 7(1), 1–7.

Alkholief, M., Kalam, M. A., Raish, M., Ansari, M. A., Alsaleh, N. B., Almomen, A., Ali, R., and Alshamsan, A. (2023). Topical sustained-release dexamethasone-loaded chitosan nanoparticles: Assessment of drug delivery efficiency in a rabbit model of endotoxin-induced uveitis. Pharmaceutics, 15(9), 2273.

Elsaid, N., Jackson, T. L., Elsaid, Z., Alqathama, A., and Somavarapu, S. (2016). PLGA microparticles entrapping chitosan-based nanoparticles for the ocular delivery of ranibizumab. Molecular Pharmaceutics, 13(9), 2923-2940.

Asasutjarit, R., Managit, C., Phanaksri, T., Treesuppharat, W., and Fuongfuchat, A. (2020). Formulation development and in vitro evaluation of transferrin-conjugated liposomes as a carrier of ganciclovir targeting the retina. International Journal of Pharmaceutics, 577, 119084.

Ullah, S., Azad, A. K., Nawaz, A., Shah, K. U., Iqbal, M., Albadrani, G. M., and Abdel-Daim, M. M. (2022). 5-fluorouracil-loaded folic-acid-fabricated chitosan nanoparticles for site-targeted drug delivery cargo. Polymers, 14(10), 2010.

Asasutjarit, R., Theerachayanan, T., Kewsuwan, P., Veeranodha, S., Fuongfuchat, A., and Ritthidej, G. C. (2015). Development and evaluation of diclofenac sodium loaded-N-trimethyl chitosan nanoparticles for ophthalmic use. AAPS Pharmscitech, 16, 1013-1024.

Purnama, L. M. J., Witchitchan, R., Fristiohady, A., Uttarawichien, T., Payuhakrit, W., and Asasutjarit, R. (2024). Formulation development of thermoresponsive quercetin nanoemulgels and in vitro investigation of their inhibitory activity on vascular endothelial growth factor-A inducing neovascularization from the retinal pigment epithelial cells. Journal of Drug Delivery Science and Technology, 100(6), 106005.

Schulz, A., and Szurman, P. (2022). Vitreous substitutes as drug release systems. Translational Vision Science & Technology, 11(9), 14.

Bonfiglio, A., Lagazzo, A., Repetto, R., and Stocchino, A. (2015). An experimental model of vitreous motion induced by eye rotations. Eye and Vision, 2, 10.

Yin, Y., Li, J., Su, L., Ou, Z., Lv, Q., Xiao, M., Wang, C., Zeng, D., Gu, Y., Yang, F., Chen, M., Feng, S., Hu, W., Bu, F., Zhu, B., and Xu, Y. (2023). Screening and verification of antiviral compounds against HSV-1 using a method based on a plaque inhibition assay. BMC Infectious Diseases, 23(1), 890.

Thongchai, S., Ekalaksananan, T., Pientong, C., Aromdee, C., Seubsasana, S., Sukpol, C., and Kongyingyoes, B. (2008). Anti-herpes simplex virus type 1 activity of crude ethyl acetate extract derived from leaves of Clinacanthus nutans Lindau. KKU Research Journal (Graduate Studies), 8 (2), 65-73.

Rodrigues, S., da Costa, A. M., and Grenha, A. (2012). Chitosan/carrageenan nanoparticles: effect of cross-linking with tripolyphosphate and charge ratios. Carbohydrate Polymers, 89(1), 282–289.

Thomas, O. E., and Adegoke, O. A. (2015). Development of a visible spectrophotometric method for the analysis of ganciclovir in bulk sample and dosage form. Tropical Journal of Pharmaceutical Research, 14(6), 1095-1101.

Zaman, P., Wang, J., Blau, A., Wang, W., Li, T., Kohane, D. S., Loscalzo, J., and Zhang, Y. Y. (2016). Incorporation of heparin-binding proteins into preformed dextran sulfate-chitosan nanoparticles. International Journal of Nanomedicine, 11, 6149–6159.

Jintapattanakit, A., Junyaprasert, V. B., Mao, S., Sitterberg, J., Bakowsky, U., and Kissel, T. (2007). Peroral delivery of insulin using chitosan derivatives: a comparative study of polyelectrolyte nanocomplexes and nanoparticles. International Journal of Pharmaceutics, 342(1-2), 240–249.

Danial, S., Gamal, F., Saad, N., Hamdy, H., Adel, G., Elnahas, M., and Wagdy, H. A. (2023). Simple Green RP-UPLC. Method for the analysis of ganciclovir in its bulk form and pharmaceutical preparations. Egyptian Journal of Chemistry, 66(9), 133-143.

Lim, C., Shin, Y., and Oh, K. T. (2024). Polyelectrolyte complex for drug delivery. Drug Targets and Therapeutics, 3(1), 62-73.

Hussain, Z, and Sahudin, S. (2016). Preparation, characterisation and colloidal stability of chitosan-tripolyphosphate nanoparticles: Optimisation of formulation and process parameters. International Journal of Pharmacy and Pharmaceutical Science, 8(3), 297-308.

Herdiana, Y., Wathoni, N., Shamsuddin, S., and Muchtaridi, M. (2021). Drug release study of the chitosan-based nanoparticles. Heliyon, 8(1), e08674.

Moraru, C., Mincea, M., Menghiu, G., and Ostafe, V. (2020). Understanding the factors influencing chitosan-based nanoparticles-protein corona interaction and drug delivery applications. Molecules, 25(20), 4758.

Katas, H., Raja, M. A., and Lam, K. L. (2013). Development of chitosan nanoparticles as a stable drug delivery system for protein/siRNA. International Journal of Biomaterials, 2013, 146320.

Pagar, K., and Vavia, P. (2013). Rivastigmine-loaded L-lactide-depsipeptide polymeric nanoparticles: decisive formulation variable optimization. Scientia Pharmaceutica, 81(3), 865–885.

Aranaz, I., Alcántara, A. R., Civera, M. C., Arias, C., Elorza, B., Heras Caballero, A., and Acosta, N. (2021). Chitosan: An overview of its properties and applications. Polymers, 13(19), 3256.

Wang, L., Zhou, M. B., and Zhang, H. (2021). The emerging role of topical ocular drugs to target the posterior eye. Ophthalmology and Therapy, 10(3), 465–494.

Sobolewska, B., Heiduschka, P., Bartz-Schmidt, K. U., and Ziemssen, F. (2017). pH of anti-VEGF agents in the human vitreous: low impact of very different formulations. International Journal of Retina and Vitreous, 3, 22.

Gontijo, L. A. P., Raphael, E., Ferrari, D. P. S., Ferrari, J. L., Lyon, J. P., and Schiavon, M. A. (2020). pH effect on the synthesis of different size silver nanoparticles evaluated by DLS and their size-dependent antimicrobial activity. Matéria, 25(04), e-12845.

Clayton, K. N., Salameh, J. W., Wereley, S. T., and Kinzer-Ursem, T. L. (2016). Physical characterization of nanoparticle size and surface modification using particle scattering diffusometry. Biomicrofluidics, 10(5), 054107.

Pilipenko, I., Korzhikov-Vlakh, V., Sharoyko, V., Zhang, N., Schäfer-Korting, M., Rühl, E., Zoschke, C., and Tennikova, T. (2019). pH-sensitive chitosan-heparin nanoparticles for effective delivery of genetic drugs into epithelial cells. Pharmaceutics, 11(7), 317.

Nallamuthu, I., Devi, A., and Khanum, F. (2015). Chlorogenic acid loaded chitosan nanoparticles with sustained release property, retained antioxidant activity and enhanced bioavailability. Asian Journal of Pharmaceutical Sciences, 10(3), 203-211.

Chanphai, P., Konka, V., and Tajmir-Riahi, H. A. (2017). Folic acid–chitosan conjugation: A new drug delivery tool. Journal of Molecular Liquids, 238, 155-159.

Yang, S. J., Lin, F. H., Tsai, K. C., Wei, M. F., Tsai, H. M., Wong, J. M., and Shieh, M. J. (2010). Folic acid-conjugated chitosan nanoparticles enhanced protoporphyrin IX accumulation in colorectal cancer cells. Bioconjugate Chemistry, 21(4), 679-689.

Gaber, D. A., Alnwiser, M. A., Alotaibi, N. L., Almutairi, R. A., Alsaeed, S. S., Abdoun, S. A., and Alsubaiyel, A. M. (2022). Design and optimization of ganciclovir solid dispersion for improving its bioavailability. Drug Delivery, 29(1), 1836-1847.

Gatta, A. K., Chandrashekhar, R., Udupa, N., Reddy, M. S., Mutalik, S., and Josyula, V. R. (2020). Strategic design of dicer substrate siRNA to mitigate the resistance mediated by ABCC1 in doxorubicin-resistant breast cancer. Indian Journal of Pharmaceutical Sciences, 82(2), 329-340.

Ayodele, O., Okoronkwo, A. E., Oluwasina, O. O., and Abe, T. O. (2018). Utilization of blue crab shells for the synthesis of chitosan nanoparticles and their characterization. Songklanakarin Journal of Science and Technology, 40, 1039-1042.

Mishra, A., Sinha, V. R., Sharma, S., Mathew, A. T., Kumar, R., and Yadav, A. K. (2023). A comprehensive compatibility study of ganciclovir with some common excipients. American Journal of Biopharmacy and Pharmaceutical Sciences, 3(2), 1-10.

Sawdon, A. J., Zhang, J., Peng, S., Alyami, E. M., and Peng, C. A. (2021). Polymeric nanovectors incorporated with ganciclovir and HSV-TK encoding plasmid for gene-directed enzyme prodrug therapy. Molecules, 26(6), 1759.

Weng, J., Tong, H. H. Y., and Chow, S. F. (2020). In vitro release study of the polymeric drug nanoparticles: Development and validation of a novel method. Pharmaceutics, 12(8), 732.

Mendoza, E. J., Manguiat, K., Wood, H., and Drebot, M. (2020). Two detailed plaque assay protocols for the quantification of infectious SARS‐CoV‐2. Current Protocols in Microbiology, 57(1), cpmc105.

Kajiwara, E., Kawano, K., Hattori, Y., Fukushima, M., Hayashi, K., and Maitani, Y. (2007). Long-circulating liposome-encapsulated ganciclovir enhances the efficacy of HSV-TK suicide gene therapy. Journal of Controlled Release: Official Journal of the Controlled Release Society, 120(1-2), 104–110.




DOI: https://doi.org/10.17509/ijost.v10i1.80998

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Universitas Pendidikan Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Science and Technology is published by UPI.
StatCounter - Free Web Tracker and Counter
View My Stats