Enhanced Product Defect Detection in Smart Manufacturing Using ConvNeXt-Stacked Autoencoder Architecture
Abstract
Keywords
Full Text:
PDFReferences
Drakaki, M., Karnavas, Y.L., Tzionas, P. and Chasiotis, I.D., (2021). Recent developments towards Industry 4.0 oriented predictive maintenance in induction motors. Procedia Computer Science, 180, 943-949.
Glushchenko, V. V. (2023). Theoretical foundations of the creation of a curriculum in higher project IT in education. Indonesian Journal of Teaching in Science, 3(2), 161-170.
Suyunovich, T. O., and Fayzievna, H. M. (2023). Improving training of modern leaders utilizing it in the administration of the higher education system. Indonesian Journal of Teaching in Science, 3(2), 191-200.
Glushchenko, V. V. (2024). The paradigm of curriculum differentiation in higher IT education. ASEAN Journal for Science Education, 3(1), 87-94.
Shaffiyah, I., Dwiyanti, V., and Masek, A. (2022). Smart city and society 5.0: Involvement of information technology in the development of public service systems in Indonesia. ASEAN Journal of Community Service and Education, 1(1), 31-42.
Syahrul, S., Nurhayati, S., Wicaksono, M. F., and Fatimah, T. N. (2025). Internet of things-based child stunting detection system for supporting sustainable development goals. Journal of Engineering Science and Technology, 20(2), 510-519.
Nidamanuri, S., Masood, J. A. I. S., Asirvatham, D., Abas, F. S. B., Veerappan, K. N. G., Budiman, F., and Sugumaran, V. (2025). Predictive deep learning models to identify traumatic brain injuries using MRI data. Journal of Engineering Science and Technology, 20(2), 362-379.
Robandi, B., and Setiawardani, W. (2025). Enhancing digital literacy and teacher-preneurship through a critical pedagogy-based training platform. Journal of Engineering Science and Technology, 20(2), 558-576.
Azhar, N. A., Radzi, N. A., Ramachandaramurthy, V. K., Abdullah, F., Kahar, N., Awang, A., and Yeep, C. K. (2025). Electric vehicle consumption dataset tailored to malaysian situation and implemented using rapid miner auto-model. Journal of Engineering Science and Technology, 20(2), 490-509.
Soegoto, E. S., Rafdhi, A. A., Abduh, A., Rosmaladewi, R., and Haristiani, N. (2025). Emerging applications of IoT, machine learning, virtual reality, augmented reality and artificial intelligent in monitoring systems: a comprehensive review and analysis. Journal of Engineering Science and Technology, 20(2), 404-426.
Anh, D. H. M. (2022). Mesh network based on MQTT broker for smart home and IIoT factory. ASEAN Journal of Science and Engineering, 2(2), 173-180.
Thapwiroch, K., Kumlue, A., Saoyong, N., Taprasan, P., and Puengsungewan, S. (2021). Easy-mushroom mobile application using the Internet of Things (IoT). Indonesian Journal of Educational Research and Technology, 1(1), 1-6.
Jebur, T. K. (2023). Greening the internet of things: A comprehensive review of sustainable iot solutions from an educational perspective. Indonesian Journal of Educational Research and Technology, 3(3), 247-256.
Syahrul, S., Nurhayati, S., Wicaksono, M. F., and Fatimah, T. N. (2025). Internet of things-based child stunting detection system for supporting sustainable development goals. Journal of Engineering Science and Technology, 20(2), 510-519.
Soegoto, E. S., Rafdhi, A. A., Abduh, A., Rosmaladewi, R., and Haristiani, N. (2025). Emerging applications of IoT, machine learning, virtual reality, augmented reality and artificial intelligent in monitoring systems: a comprehensive review and analysis. Journal of Engineering Science and Technology, 20(2), 404-426.
Luckyardi, S., Hayati, E. N., Abduh, A., Rosmaladewi, R., and Haristiani, N. (2025). Emerging trends in technology: Insights across machine learning, digitalization, and industry applications. Journal of Engineering Science and Technology, 20(2), 458-475.
Ismail, F. B., Azahar, N. A., Dihrab, S. S., Al-Bazi, D. A., and Kazem, H. A. (2025). Internet of Things for Monitoring and Optimisation of Stand-Alone Systems in Rural Area: An Experimental Case. Journal of Engineering Science and Technology, 20(2), 612-626.
Huong, A. K., Sukki, J. M., and Ngu, X. T. (2025). MOBILEDFU: Classification of diabetic foot ulcer infection on the edge. Journal of Engineering Science and Technology, 20(2), 577-589.
Al Husaeni, D. F., Haristiani, N., Wahyudin, W., and Rasim, R. (2024). Chatbot artificial intelligence as educational tools in science and engineering education: A literature review and bibliometric mapping analysis with its advantages and disadvantages. ASEAN Journal of Science and Engineering, 4(1), 93-118.
Rochman, S., Rustaman, N., Ramalis, T. R., Amri, K., Zukmadini, A. Y., Ismail, I., and Putra, A. H. (2024). How bibliometric analysis using VOSviewer based on artificial intelligence data (using ResearchRabbit Data): Explore research trends in hydrology content. ASEAN Journal of Science and Engineering, 4(2), 251-294.
Solihat, A. N., Dahlan, D., Kusnendi, K., Susetyo, B., and Al Obaidi, A. S. M. (2024). Artificial intelligence (AI)-based learning media: Definition, bibliometric, classification, and issues for enhancing creative thinking in education. ASEAN Journal of Science and Engineering, 4(3), 349-382.
Rahayu, N. I., and Ismail, A. (2023). Trends in the use of artificial intelligence (ai) technology in increasing physical activity. Indonesian Journal of Educational Research and Technology, 3(3), 295-304.
Fiandini, M., Nandiyanto, A. B. D., and Kurniawan, T. (2023). Bibliometric analysis of research trends in conceptual understanding and sustainability awareness through artificial intelligence (AI) and digital learning media. Indonesian Journal of Multidiciplinary Research, 3(2), 477-486.
Nurhasanah, S., and Nugraha, M. S. The future of learning: Ethical and philosophical implications of artificial intelligence (AI) integration in education. Indonesian Journal of Multidiciplinary Research, 4(2), 341-352.
Alimi, A. E., Buraimoh, O. F., Aladesusi, G. A., and Babalola, E. O. (2021). University students’ awareness of, access to, and use of artificial intelligence for learning in Kwara State, Indonesian Journal of Teaching in Science, 1(2), 91-104.
Rahmiyanti, H. (2024). Bibliometric analysis on artificial intelligence research in Indonesia vocational education. ASEAN Journal for Science Education, 3(2), 183-192.
Agarry, R. O., Omolafe, E. V., Animashaun, V. O., and Babalola, E. O. (2022). Primary education undergraduates’ competency in the use of artificial intelligence for learning in Kwara State. ASEAN Journal of Educational Research and Technology, 1(2), 111-118.
Muhabbat, H., Mukhiddin, K., Jalil, H., Dustnazar, K., Farxod, T., Shavkat, M., Khulkar, K., and Jakhongir, S. (2024). The digital frontier: AI-enabled transformations in higher education management. Indonesian Journal of Educational Research and Technology, 4(1), 71-88.
Viorennita, A., Dewi, L., and Riyana, C. (2023). The role of ChatGPT AI in student learning experience. Indonesian Journal of Multidiciplinary Research, 3(2), 445-452.
Abulude, F. O., Acha, S., Arifalo, K. M., Akinnusotu, A., Oluwagbayide, S. D., Al Shoumik, B. A., and Gbotoso, A. O. (2023). Monitoring of air quality with satellite-based sensor: The case of four towns in Southeast, Nigeria. ASEAN Journal of Science and Engineering, 3(1), 39-46.
Ratsame, P., Koedsaksit, M., Jitsoontron, S., Jaisamak, U., and Puengsungewan, S. (2021). Vehicle-tracking mobile application without a GPS sensor. Indonesian Journal of Educational Research and Technology, 1(1), 11-14.
Jebur, T. K. (2024). Securing wireless sensor networks, types of attacks, and detection/prevention techniques, an educational perspective. ASEAN Journal of Science and Engineering Education, 4(1), 43-50.
Dilshad, M., Hussain, T., Ali, S., Shahzad, M. S., Javed, M., Ahmad, F. N., and Zaki, A. A. (2025). Graphene-based electrochemical sensors for heavy metal ions detection: A comprehensive review. ASEAN Journal for Science and Engineering in Materials, 4(1), 23-42.
Syahrul, S., Nurhayati, S., Wicaksono, M. F., and Fatimah, T. N. (2025). Internet of things-based child stunting detection system for supporting sustainable development goals. Journal of Engineering Science and Technology, 20(2), 510-519.
Luckyardi, S., Hayati, E. N., Abduh, A., Rosmaladewi, R., and Haristiani, N. (2025). Emerging trends in technology: Insights across machine learning, digitalization, and industry applications. Journal of Engineering Science and Technology, 20(2), 458-475.
Taha, I. Z., and Al Janaby, A. O. (2025). Interference mitigation for dynamic user connectivity using sdn and radio resource management in cell-less networks. Journal of Engineering Science and Technology, 20(2), 520-535.
Ismail, F. B., Azahar, N. A., Dihrab, S. S., Al-Bazi, D. A., and Kazem, H. A. (2025). Internet of things for monitoring and optimisation of stand-alone systems in rural area: An experimental case. Journal of Engineering Science and Technology, 20(2), 612-626.
Huong, A. K., Sukki, J. M., and Ngu, X. T. (2025). MOBILEDFU: Classification of diabetic foot ulcer infection on the edge. Journal of Engineering Science and Technology, 20(2), 577-589.
Bangkerd, P., and Sangsawang, T. (2021). Development of augmented reality application for exercise to promote health among elderly. Indonesian Journal of Educational Research and Technology, 1(3), 77-80.
Albar, C. N., Widiansyah, M. G., Mubarok, S., Aziz, M. A., and Maulana, H. (2021). Application of augmented reality technology with the fuzzy logic method as an online physical education lecture method in the new normal era. Indonesian Journal of Multidiciplinary Research, 1(1), 35-40.
Al Husaeni, D. N., Munir, M., and Rasim, R. How to create Augmented Reality (AR) applications using unity and Vuforia engine to teach basic algorithm concepts: Step-by-step procedure and bibliometric analysis. Indonesian Journal of Teaching in Science, 4(2), 189-204.
Soegoto, E. S., Rafdhi, A. A., Abduh, A., Rosmaladewi, R., and Haristiani, N. (2025). Emerging applications of iot, machine learning, virtual reality, augmented reality and artificial intelligent in monitoring systems: a comprehensive review and analysis. Journal of Engineering Science and Technology, 20(2), 404-426.
Luckyardi, S., Hayati, E. N., Abduh, A., Rosmaladewi, R., and Haristiani, N. (2025). Emerging trends in technology: insights across machine learning, digitalization, and industry applications. Journal of Engineering Science and Technology, 20(2), 458-475.
Almurtadha, Y. (2025). Let's immerse in metaverse: Overview, challenges, and stumeta framework for successful implementation. Journal of Engineering Science and Technology, 20(2), 380-403.
Istianah, F., Hidayat, A., Handayanto, S. K., Utama, C., Susilawati, A., and Abadi, S. (2025). Development of science virtual laboratory (scivlab) to develop critical thinking skills in elementary schools on the topic of changes in the state of substances. Journal of Engineering Science and Technology, 20(1), 9-16.
Meirawan, D., Muktiarni, M., Rahayu, S., Sabitri, Z., and Ghinaya, Z. (2025). Usability assessment of flipo-ar: navigating learning in a vuca world with augmented reality. Journal of Engineering Science and Technology, 20(1), 137-144.
Firdiarahma, F. (2021). The use of virtual reality as a substitute for the pre-school students’ field trip activity during the learning from home period. Indonesian Journal of Educational Research and Technology, 1(2), 57-60.
Ekunola, G. T., Onojah, A. O., Talatu, A. F., and Bankole, M. O. (2022). Colleges of education lecturers’ attitude towards the use of virtual classrooms for instruction. Indonesian Journal of Multidiciplinary Research, 2(1), 187-194.
Bugarso, J. M. S., Cabantugan, R. E., Que-ann, D. T., and Malaco, A. C. (2021). Students’ learning experiences and preference in performing science experiments using hands-on and virtual laboratory. Indonesian Journal of Teaching in Science, 1(2), 147-152.
Azizah, E. V., Nandiyanto, A. B. D., Kurniawan, T., and Bilad, M. R. (2022). The effectiveness of using a virtual laboratory in distance learning on the measurement materials of the natural sciences of physics for junior high school students. ASEAN Journal of Science and Engineering Education, 2(3), 207-214.
Salman, A. A., and Yahaya, O. (2025). Perception of early childhood education lecturers on the use of virtual learning. ASEAN Journal for Science Education, 4(1), 31-38.
Ekunola, G. T., Obielodan, O. O., and Babalola, E. O. (2022). Lecturers perceived proficiency in the use of virtual classrooms for instruction in colleges of education. ASEAN Journal of Educational Research and Technology, 1(1), 7-16.
Sison, A. J. R. N., Bautista, J. M., Javier, J. L., Delmonte, R. J. B., and Cudera, R. B. (2024). Development and acceptability of virtual laboratory in learning systematics. ASEAN Journal of Educational Research and Technology, 3(1), 9-26.
Rivky, M., Fajar, M. R. K., and Pangestu, A. R. (2022). Utilization of virtual reality chat as a means of learning communication in the field of education. ASEAN Journal of Community Service and Education, 1(1), 23-30.
Azizah, E. V., Nandiyanto, A. B. D., Kurniawan, T., and Bilad, M. R. (2022). The effectiveness of using a virtual laboratory in distance learning on the measurement materials of the natural sciences of physics for junior high school students. ASEAN Journal of Science and Engineering Education, 2(3), 207-214.
Chen, X. R., Ku, H. H., Chen, Y., Chen, W., Dai, S., Lin, C. J., Yu, M. H., and Weng, T. S. (2025). Developing an identification and testing system for cardiac surgical instrument capabilities. Journal of Engineering Science and Technology, 20(2), 476-489.
Soegoto, E. S., Rafdhi, A. A., Abduh, A., Rosmaladewi, R., and Haristiani, N. (2025). Emerging applications of IOT, machine learning, virtual reality, augmented reality and artificial intelligent in monitoring systems: A comprehensive review and analysis. Journal of Engineering Science and Technology, 20(2), 404-426.
Luckyardi, S., Hayati, E. N., Abduh, A., Rosmaladewi, R., and Haristiani, N. (2025). Emerging trends in technology: Insights across machine learning, digitalization, and industry applications. Journal of Engineering Science and Technology, 20(2), 458-475.
AlmurtadhA, Y. (2025). Let's immerse in metaverse: overview, challenges, and stumeta framework for successful implementation. Journal of Engineering Science and Technology, 20(2), 380-403.
Istianah, F., Hidayat, A., Handayanto, S. K., Utama, C., Susilawati, A., and Abadi, S. (2025). Development of science virtual laboratory (SCIVLAB) to develop critical thinking skills in elementary schools on the topic of changes in the state of substances. Journal of Engineering Science and Technology, 20(1), 9-16.
Wang, T., Chen, Y., Qiao, M. and Snoussi, H., (2018). A fast and robust convolutional neural network-based defect detection model in product quality control. The International Journal of Advanced Manufacturing Technology, 94, 3465-3471.
Yang, J., Li, S., Wang, Z., Dong, H., Wang, J. and Tang, S., (2020). Using deep learning to detect defects in manufacturing: A comprehensive survey and current challenges. Materials, 13(24), 5755.
Villalba-Diez, J., Schmidt, D., Gevers, R., Ordieres-Meré, J., Buchwitz, M. and Wellbrock, W., (2019). Deep learning for industrial computer vision quality control in the printing industry 4.0. Sensors, 19(18), 3987.
Abood, A.M., Nasser, A.R. and Al-Khazraji, H., (2023). Predictive maintenance of electromechanical systems based on enhanced generative adversarial neural network with convolutional neural network. International Journal of Artificial Intelligence Research, 2252, 8938.
Al-Khazraji, H., Nasser, A.R. and Khlil, S., (2022). An intelligent demand forecasting model using a hybrid of metaheuristic optimization and deep learning algorithm for predicting concrete block production. IAES International Journal of Artificial Intelligence, 11(2), 649.
Nasser, A. and Sever, H., (2020). A concept-based sentiment analysis approach for Arabic. The International Arab Journal of Information Technology, 17(5), 778-788.
Cardoso, D. and Ferreira, L., (2020). Application of predictive maintenance concepts using artificial intelligence tools. Applied Sciences, 11(1), 18.
Nasser, A. and Al-Khazraji, H., (2022). A hybrid of convolutional neural network and long short-term memory network approach to predictive maintenance. International Journal of Electrical and Computer Engineering (IJECE), 12(1), 721-730.
Abood, A.M., Nasser, A.R. and Al-Khazraji, H., (2022). Predictive maintenance of electromechanical systems using deep learning algorithms. Ingénierie des Systèmes d'Information, 27(6), p1009.
Ozdemir, R. and Koc, M., (2019), September. A quality control application on a smart factory prototype using deep learning methods. In 2019 IEEE 14th International Conference on Computer Sciences and Information Technologies (CSIT), 1, 46-49.
Song, S., Jing, J., Huang, Y. and Shi, M., (2021). EfficientDet for fabric defect detection based on edge computing. Journal of Engineered Fibers and Fabrics, 16, 15589250211008346.
Chaabi, M., Hamlich, M. and Garouani, M., (2023). Product defect detection based on convolutional autoencoder and one-class classification. IAES International Journal of Artificial Intelligence, 12(2), 912.
Zheng, X., Zheng, S., Kong, Y. and Chen, J., (2021). Recent advances in surface defect inspection of industrial products using deep learning techniques. The International Journal of Advanced Manufacturing Technology, 113, 35-58.
Rahman, N.A., Saad, N.M., Abdullah, A.R., Hassan, M.R.M., Basir, M.S.S.M. and Noor, N.S.M., (2018). Automated real-time vision quality inspection monitoring system. Indonesian Journal of Electrical Engineering and Computer Science, 11(2), 775-783.
Tercan, H. and Meisen, T., (2022). Machine learning and deep learning based predictive quality in manufacturing: A systematic review. Journal of Intelligent Manufacturing, 33(7), 1879-1905
Likhosherstov, V., Choromanski, K. and Weller, A., (2023), June. On the expressive flexibility of self-attention matrices. In Proceedings of the AAAI Conference on Artificial Intelligence, 37(7), 8773-8781.
Li, Z., Gu, T., Li, B., Xu, W., He, X. and Hui, X., (2022). ConvNeXt-based fine-grained image classification and bilinear attention mechanism model. Applied Sciences, 12(18), 9016.
Aksoy, S., Demircioglu, P. and Bogrekci, I., (2024). Enhancing Melanoma Diagnosis with Advanced Deep Learning Models Focusing on Vision Transformer, Swin Transformer, and ConvNeXt. Dermatopathology, 11(3), 239-252.
Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T. and Xie, S., (2022). A convnet for the 2020s. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, 11976-11986.
Reyes, D. and Sánchez, J., (2024). Performance of convolutional neural networks for the classification of brain tumors using magnetic resonance imaging. Heliyon, 10(3), e25468.
Kim, J.Y. and Oh, J.S., (2023). A Pilot study of stacked autoencoders for ship mode classification. Applied Sciences, 13(9), 5491.
Bao, W., Yue, J., and Rao, Y., (2017). A deep learning framework for financial time series using stacked autoencoders and long-short term memory. PloS one, 12(7), e0180944.
Schuster, V. and Krogh, A., (2021). A manifold learning perspective on representation learning: learning decoder and representations without an encoder. Entropy, 23(11), 1403.
Hu, X., Yin, Z., Zeng, Z. and Peng, Y., (2023). Prediction of miRNA–Disease associations by cascade forest model based on stacked autoencoder. Molecules, 28(13), 5013.
DOI: https://doi.org/10.17509/ijost.v10i2.82229
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Universitas Pendidikan Indonesia

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Science and Technology is published by UPI.
View My Stats