Fire Performance of Cross-Laminated Timber Enhanced by Borax Treatment and Densification for Structural Wood Composites
Abstract
This study investigates the fire performance of Cross-Laminated Timber (CLT) using a combination of densification and borax treatment to enhance its safety for structural applications. Laminated Batai wood underwent borax treatment either before or after densification, followed by tests on absorption capacity and combustion resistance. The results revealed variations in fire resistance and density profiles depending on the treatment sequence. Densification increased density, and borax improved flame retardancy. The treatment order influenced absorption rates and charring behavior because the densification process modified internal porosity, affecting chemical penetration. Image analysis and thermal evaluation confirmed that specific combinations improved fire performance. This approach offers a scientific and technological basis for optimizing fire-resistant engineered wood products with lightweight species.
Keywords
Full Text:
PDFReferences
Nurjamil, A.M., Wolio, N.A., Laila, R.N., Rohmah, S.A., Nandiyanto, A.B.D., Anggraeni, S., and Kurniawan, T. (2021). Eco-friendly batteries from rice husks and wood grain. ASEAN Journal of Science and Engineering, 1(1), 45-48.
Olabiyi, O.S. (2024). Efficacy of open learning system on college of education students’ achievement in woodwork technology. Indonesian Journal of Educational Research and Technology, 4(1), 9-22.
Nurjamil, A.M., Wolio, N.A., Laila, R.N., Rohmah, S.A., Anggraeni, S., and Nandiyanto A.B.D. (2021). Effect of rice husks and wood grain as electrolyte adsorbers on battery. Indonesian Journal of Multidiciplinary Research, 1(1), 69-72.
Hidayah, F., Muslihah, F., Nuraida, I., Winda, R., Vania, V., Rusdiana, D., and Suwandi, T. (2021). Steam power plant powered by wood sawdust waste: A prototype of energy crisis solution. Indonesian Journal of Teaching in Science, 1(1), 39-46.
Wimmers, G. (2017). Wood: a construction material for tall buildings. Nature Reviews Materials, 2(12), 1-2.
Kodur, V., Kumar, P., and Rafi, M. M. (2020). Fire hazard in buildings: review, assessment and strategies for improving fire safety. PSU Research Review, 4(1), 1-23.
Erdinç, S. Y. (2023). A timeless journey of strength and beauty: The potentials of the use of stone in architecture. Journal of Design for Resilience in Architecture and Planning, 4(3), 317-338.
Mallo, M. F. L., and Espinoza, O. A. (2014). Outlook for cross-laminated timber in the United States. BioResources, 9(4), 7427-7443.
Erbaşu, R., and Țăpuşi, D. (2020). Considerations about fire behaviour of an unprotected wood elements according to Romanian Code SR EN 1995-1-2-2004. In IOP Conference Series: Materials Science and Engineering, 789(1), 012019.
Bao, M., Huang, X., Jiang, M., Yu, W., and Yu, Y. (2017). Effect of thermo-hydro-mechanical densification on microstructure and properties of poplar wood (Populus tomentosa). Journal of Wood Science, 63, 591-605.
Cabral, J. P., Kafle, B., Subhani, M., Reiner, J., and Ashraf, M. (2022). Densification of timber: a review on the process, material properties, and application. Journal of Wood Science, 68(1), 20.
Tenorio, C., Moya, R., and Navarro-Mora, A. (2021). Flooring characteristics of thermo-mechanical densified wood from three hardwood tropical species in Costa Rica. Maderas. Ciencia y Tecnología, 23, 1-12.
Aslan, S., and Özkaya, K. (2004). Farkli kimyasal maddelerle emprenye edilmiş ahşap esasli levhalarin yanma mukavemetinin araştirilmasi. Turkish Journal of Forestry, 5(2), 122-140.
Xu, Z., Zhao, W., Yan, L., Tang, X., Feng, Y., and Wang, Z. (2023). Processing of Pinus sylvestris L. into a heat-insulating, thermally stable, and flame-retarded material by combining the flame-retardant impregnation and densification treatment. Holzforschung, 77(10), 762-775.
Augustina, S., Wahyudi, I., Darmawan, I. W., Malik, J., Basri, E., and Kojima, Y. (2020). Specific gravity and dimensional stability of boron-densified wood on three lesser-used species from Indonesia. Journal of the Korean Wood Science and Technology, 48(4), 458-471.
Chu, D., Mu, J., Avramidis, S., Rahimi, S., Liu, S., and Lai, Z. (2019). Functionalized surface layer on poplar wood fabricated by fire retardant and thermal densification. Part 1: Compression recovery and flammability. Forests, 10(11), 955.
Albert, C. M., and Liew, K. C. (2022). Influence of densification treatment on the morphology and density profile of Paraserianthes falcataria Laminas. Philippine Journal of Science, 151, 2509-2516.
Liew, K. C., Albert, C. M., and Shamsuddin, E. O. (2023). Physical and morphological changes in heat-treated and densified fast-growing timber material. In E3S Web of Conferences, 445, 01009.
Mergen, A., Demirhan, M. H., and Bilen, M. U. R. A. T. (2003). Processing of boric acid from borax by a wet chemical method. Advanced Powder Technology, 14(3), 279-293.
Tan, Y. F., and Liew, K. C. (2022). Morphological and bending properties of cross-laminated timber prototype manufactured with densified Paraserianthes falcataria. In IOP Conference Series: Earth and Environmental Science, 1053(1), 012033.
Brandon, D., Klippel, M., and Frangi, A. (2021). Glueline integrity in fire. RISE Research Institutes of Sweden, 107(6), 1–79.
Bao, M., Huang, X., Zhang, Y., Yu, W., and Yu, Y. (2016). Effect of density on the hygroscopicity and surface characteristics of hybrid poplar compreg. Journal of Wood Science, 62(5), 441–451.
Mendis, M. S., Ishani, P. A. U., and Halwatura, R. U. (2023). Impacts of chemical modification of wood on water absorption: a review. Journal of the Indian Academy of Wood Science, 20(1), 73–88.
Lesar, B., Gorišek, Ž., and Humar, M. (2009). Sorption properties of wood impregnated with boron compounds, sodium chloride, and glucose. Drying Technology, 27(1), 94–102.
Yu, Y., Jiang, X., Ramaswamy, H. S., Zhu, S., and Li, H. (2018). Effect of high-pressure densification on moisture sorption properties of Paulownia wood. BioResources, 13(2), 2473–2486.
Feng, T. Y., and Chiang, L. K. (2020). Effects of densification on low-density plantation species for cross-laminated timber. In AIP Conference Proceedings, 2284(1), 020001.
Bagheri, S., Alinejad, M., Ohno, K., Hasburgh, L., Arango, R., and Nejad, M. (2022). Improving durability of cross laminated timber (CLT) with borate treatment. Journal of Wood Science, 68(1), 34.
Khalil, H. P. S. A., Dungani, R., Mohammed, I. A., Hossain, M. S., Sri Aprilia, N. A., Budiarso, E., and Rosamah, E. (2014). Determination of the combined effect of chemical modification and compression of agatis wood on the dimensional stability, termite resistance, and morphological structure. BioResources, 9(4), 6614-6626.
Adanur, H., Fidan, M. S., and Yaşar, Ş. Ş. (2017). The technological properties of oriental beech (Fagus orientalis Lipsky) impregnated with boron compounds and natural materials. BioResources, 12(1), 1647–1661.
Toker, H., Baysal, E., Simsek, H., Senel, A., Sonmez, A., Altinok, M., Ozcifci, A., and Yapici, F. (2009). Effects of some environmentally-friendly fireretardant boron compounds on modulus of rupture and modulus of elasticity of wood. Wood Research, 54(1), 77–88.
Augustina, S., Wahyudi, I., Darmawan, I. W., Malik, J., Basri, E., and Kojima, Y. (2020). Specific gravity and dimensional stability of boron-densified wood on three lesser-used species from Indonesia. Journal of the Korean Wood Science and Technology, 48(4), 458-471.
da Silva Lins, T. R., Silva, T. C., Araujo, E. C. G., and da Rocha, M. P. (2022). Brocas marinhas e a biodeterioração da madeira no Brasil: uma revisão sistemática. Nativa, 10(4), 495-505.
Chu, D., Mu, J., Avramidis, S., Rahimi, S., Liu, S., and Lai, Z. (2019). Functionalized surface layer on poplar wood fabricated by fire retardant and thermal densification. Part 1: Compression recovery and flammability. Forests, 10(11), 955.
Scharf, A., Švajger, Č., Lin, C.-F., Humar, M., Sandberg, D., and Jones, D. (2024). Effect of fire-retardant treatment of wood before thermo-mechanical densification. Wood Material Science & Engineering, 19(3), 790–793.
Willerding, A. L., and Vianez, B. F. (2003). Borax diffusion treatment in the preservation of sumauma (Ceiba pentandra (L.) Gaertn.) veneer. Revista Arvore, 27(3), 321–326.
Neyses, B., Peeters, K., Buck, D., Rautkari, L., and Sandberg, D. (2021). In-situ penetration of ionic liquids during surface densification of Scots pine. Holzforschung, 75(6), 555–562.
Yokoyama, M. T., Spence, C., Hengemuehle, S. M., Whitehead, T. R., von Bernuth, R., and Cotta, M. (2016). Sodium tetraborate decahydrate treatment reduces hydrogen sulfide and the sulfate‐reducing bacteria population of swine manure. Journal of Environmental Quality, 45(6), 1838–1846.
Gan, W., Chen, C., Wang, Z., Song, J., Kuang, Y., He, S., Mi, R., Sunderland, P. B., and Hu, L. (2019). Dense, self‐formed char layer enables a fire‐retardant wood structural material. Advanced Functional Materials, 29(14), 1807444.
Laine, K., Segerholm, K., Wålinder, M., Rautkari, L., and Hughes, M. (2016). Wood densification and thermal modification: hardness, set-recovery and micromorphology. Wood Science and Technology, 50(5), 883–894.
Harada, T., Miyatake, A., Kamikawa, D., Hiramatsu, Y., Shindo, K., Inoue, A., Miyamoto, K., Tohmura, S., Hatano, Y., and Miyabayashi, M. (2013). Temperature dependence of adhesive strength and fire resistance of structural glued laminated timber beams. Mokuzai Gakkaishi, 59(4), 219–226.
Suchy, M., Virtanen, J., Kontturi, E., and Vuorinen, T. (2010). Impact of drying on wood ultrastructure observed by deuterium exchange and photoacoustic FT-IR spectroscopy. Biomacromolecules, 11(2), 515–520.
Kurt, R., and Mengeloglu, F. (2008). The effect of boric acid/borax treatment on selected mechanical and combustion properties of poplar laminated veneer lumber. Wood Research, 53(2), 113–120.
Wang, Z., Gao, Y., Zhou, Y., Fan, C., Zhou, P., and Gong, J. (2023). Pyrolysis and combustion behaviors of densified wood. Proceedings of the Combustion Institute, 39(3), 4175–4184.
DOI: https://doi.org/10.17509/ijost.v10i3.87837
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Universitas Pendidikan Indonesia

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Science and Technology is published by UPI.
View My Stats