Techno-Economic Analysis in The Production of Copper Nanoparticles with Chemical Reduction Methods using L-Ascorbic Acid

Rahmahani Alfathia Fadhilah, Muhammad Roil Bilad2

Abstract


Copper  nanoparticles  (Cu-NPs)  are  a  type  of  nanoparticles with various industrial applications. The synthesis of copper nanoparticles  by  the  chemical  reduction  method  is environmentally  friendly,  simple,  and  produces  better nanoparticles compared to other methods. This study aims to determine the feasibility of a Cu nanoparticle manufacturing project through a chemical reduction method using L-ascorbic acid on an industrial scale and evaluate it from an engineering and  economic  perspective.  Technical  analysis  is  carried  out using  a  simple  balance  sheet  analysis  while  the  economic evaluation is carried out using several economic parameters, such as Payback Period (PBP), Break-even Point (BEP), and Cumulative  Net  Present  Value  (CNPV).  The  carried-out analysis  is  supported  by  using  data  taken  based  on  the availability of tools on online shopping websites. The results of the study show that this project is profitable and feasible to run with the anticipation of taxes and sales. This research is expected  to  provide  an  industrial  scale  representation  of  the economic  evaluation  and  plan  of  the  production  of  Cu nanoparticles  by  chemical  reduction  method  using  L-Ascorbic Acid.

Keywords


Copper nanoparticles, Chemical reduction, Economic evaluation,

Full Text:

PDF

References


Amrollahi, P., Ataie, A., Nozari, A., &

Sheibani, S. (2014). Synthesis and

characterization of CuNi magnetic

nanoparticles by mechano-thermal

route. Journal of Superconductivity and

Novel Magnetism, 27(2), 481-485.

Das, R., Das, B. K., Shukla, R., Prabaharan,

T., & Shyam, A. (2012). Analysis of

electrical explosion of wire systems for

the

nanoparticles incorporated in poly (vinyl

pyrrolidone). Journal of Nanoparticle

Research, 10(7), 1183-1192.

Isomura, Y., Narushima, T., Kawasaki, H.,

Yonezawa, T., & Obora, Y. (2012).

Surfactant-free

single-nano-sized

production

of

colloidal Cu nanoparticles for use as an

active catalyst in Ullmann-coupling

reaction. Chemical

Communications, 48(31), 3784-3786.

nanopowder. Sadhana, 37(5), 629-635.

Giuffrida, S., Costanzo, L. L., Ventimiglia,

G., & Bongiorno, C. (2008).

Photochemical synthesis of copper

Lee, Y., Choi, J. R., Lee, K. J., Stott, N. E., &

Kim, D. (2008). Large-scale synthesis of

copper nanoparticles by chemically

controlled reduction for applications of

Indonesian Journal of Digital Business, Volume 2 Issue 2, p- ISSN 2798-0014 e- ISSN 2798-2432 36

inkjet-printed

electronics.

Nanotechnology, 19(41), 415604.

Shende, S., Ingle, A. P., Gade, A., & Rai, M.

(2015). Green synthesis of copper

nanoparticles by Citrus medica

Linn.(Idilimbu)

Moniri, S., Ghoranneviss, M., Hantehzadeh,

M. R., & Asadabad, M. A. (2017).

Synthesis and optical characterization of

copper nanoparticles prepared by laser

ablation. Bulletin of Materials Science,

(1), 37-43.

juice and

its

antimicrobial activity. World Journal of

Microbiology and Biotechnology, 31(6),

-873.

Solanki, J. N., Sengupta, R., & Murthy, Z. V.

P. (2010). Synthesis of copper sulphide

and copper nanoparticles with

microemulsion method. Solid State

Sciences, 12(9), 1560-1566.

Mubarok, F. A., & Nandiyanto, A. D. (2019).

Engineering and Economic Evaluation of

Production of Copper Nanoparticle by

Chemically Controlled Reduction.

International Journal of Engineering

and Science Applications, 6(2), 85-91.

Tanabe, K. (2007). Optical radiation

efficiencies of metal nanoparticles for

optoelectronic applications. Materials

Letters, 61(23-24), 4573-4575.

Nandiyanto, A. B. D., Maulana, A. C.,

Ragadhita, R., & Abdullah, A. G. (2018).

Economic evaluation of the production

ethanol from cassava roots. In IOP

Conference Series: Materials Science

and Engineering, 288(1), 012023.

Theivasanthi, T., & Alagar, M. (2011). Nano

sized copper particles by electrolytic

synthesis

and

characterizations.

International Journal of Physical

Sciences, 6(15), 3662-3671.

Nasibulin, A. G., Ahonen, P. P., Richard, O.,

Kauppinen, E. I., & Altman, I. S. (2001).

Copper and copper oxide nanoparticle

formation by chemical vapor nucleation

from copper (II) acetylacetonate. Journal

of Nanoparticle Research, 3(5), 383-398.

Varshney, R., Bhadauria, S., & Gaur, M. S.

(2012). A review: biological synthesis of

silver and copper nanoparticles. Nano

Biomedicine & Engineering, 4(2).

Wen, J., Li, J., Liu, S., & Chen, Q. Y. (2011).

Preparation of copper nanoparticles in a

water/oleic acid mixed solvent via twostep

reduction method. Colloids and

Surfaces A: Physicochemical and

Engineering Aspects, 373(1-3), 29-35.

Ramyadevi, J., Jeyasubramanian, K.,

Marikani, A., Rajakumar, G., &

Rahuman, A. A. (2012). Synthesis and

antimicrobial activity of copper

nanoparticles. Materials letters, 71, 114116.

Xiong, J., Wang, Y., Xue, Q., & Wu, X.

(2011). Synthesis of highly stable

dispersions of nanosized copper particles

using L-ascorbic acid. Green Chemistry,

(4), 900-904.

Sedighi, A., Montazer, M., & Hemmatinejad,

N. (2014). Copper nanoparticles on

bleached cotton fabric: in situ synthesis

and characterization. Cellulose, 21(3),

-2132.




DOI: https://doi.org/10.17509/ijdb.v2i2.55926

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Universitas Pendidikan Indonesia (UPI)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Author: Indonesian Journal of Digital Business is published by Universitas Pendidikan Indonesia (UPI)
View My Stats