Decay of Entanglement of Correlated Qubits Through Bosonic Fields

Deniz Türkpençe

Abstract


Distribution of entangled parties with the longest time possible is of importance to quantum communication. Therefore, analyzing the decay character of entanglement of correlated qubits in the presence of reservoir effects is of significance to the quantum-based technologies. This study covers the analysis of the temporal entanglement decay of two maximally entangled qubits against different reservoir types and system parameters. It is shown how varying the coupling type of the system to the environment affects the lifetime of entanglement. In the presence of quantum interaction between entangled qubits, it is possible to enlarge the entanglement lifetime depending on the initialization of entanglement.  Model parameters used in the numerical calculations and the results are general enough to be applied in any specific quantum-based experimental task.


Keywords


Quantum entanglement, Quantum decoherence, Open quantum system.

Full Text:

PDF

References


Bennett, C. H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., and Wootters, W. K. (1993). Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Physical review letters, 70(13), 1895-1899.

Briegel, H. J., Dür, W., Cirac, J. I., and Zoller, P. (1998). Quantum repeaters: the role of imperfect local operations in quantum communication. Physical Review Letters, 81(26), 5932.

Bruneau, L., Joye, A., and Merkli, M. (2014). Repeated interactions in open quantum systems. Journal of Mathematical Physics, 55(7), 075204.

Campagne-Ibarcq, P., Zalys-Geller, E., Narla, A., Shankar, S., Reinhold, P., Burkhart, L., and Devoret, M. H. (2018). Deterministic remote entanglement of superconducting circuits through microwave two-photon transitions. Physical review letters, 120(20), 200501.

Guo, Y., Li, J., Zhang, T., and Paternostro, M. (2012). Transferring entanglement to the steady state of flying qubits. Physical Review A, 86(5), 052315.

Hammerer, K., Sørensen, A. S., and Polzik, E. S. (2010). Quantum interface between light and atomic ensembles. Reviews of Modern Physics, 82(2), 1041.

Hill, S., Wootters, W.K. (1997). Entanglement of a pair of quantum bits. Physical Review Letters 78, 5022-5025.

Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K. (2009). Quantum entanglement. Reviews of Modern Physics 81, 865-942.

Humphreys, P. C., Kalb, N., Morits, J. P., Schouten, R. N., Vermeulen, R. F., Twitchen, D. J., ... and Hanson, R. (2018). Deterministic delivery of remote entanglement on a quantum network. Nature, 558(7709), 268-273.

Kimble, H. J. (2008). The quantum internet. Nature, 453(7198), 1023-1030.

Levine, Y., Sharir, O., Cohen, N., and Shashua, A. (2019). Quantum entanglement in deep learning architectures. Physical review letters, 122(6), 065301.

Lo, H. K., Curty, M., and Tamaki, K. (2014). Secure quantum key distribution. Nature Photonics, 8(8), 595-604.

Munro, W. J., Harrison, K. A., Stephens, A. M., Devitt, S. J., and Nemoto, K. (2010). From quantum multiplexing to high-performance quantum networking. Nature Photonics, 4(11), 792-796.

Reiserer, A., and Rempe, G. (2015). Cavity-based quantum networks with single atoms and optical photons. Reviews of Modern Physics, 87(4), 1379-1418.

Türkpençe, D. (2020). Reservoir induced activation of a quantum neuron. Physics Letters A, 384(23), 126442.

Türkpençe, D., Akıncı, T. Ç., and Şeker, S. (2019). A steady state quantum classifier. Physics Letters A, 383(13), 1410-1418.

Vallone, G., Bacco, D., Dequal, D., Gaiarin, S., Luceri, V., Bianco, G., and Villoresi, P. (2015). Experimental satellite quantum communications. Physical Review Letters, 115(4), 040502.

Wang, C., Deng, F. G., Li, Y. S., Liu, X. S., and Long, G. L. (2005). Quantum secure direct communication with high-dimension quantum superdense coding. Physical Review A, 71(4), 044305.

Wengerowsky, S., Koduru Joshi, S. K., Steinlechner, F., Zichi, J.R., Dobrovolskiy, S.M., Molen, R.van der, Los, J.W.N., Zwiller, V., Versteegh, M.A.M., Mura, A., Calonico, D., Inguscio, M., Hübel, H., Bo, L., Scheidl, T., Zeilinger, A., Xuereb, A. Ursin, R. (2019). Entanglement distribution over a 96-km-long submarine optical fiber, Proceedings of the National Academy of Sciences, 116(14), 6684-6688.

Wolfgang D., Raphael L. and Stefan H. (2017). Towards a quantum internet, European Journal of Physics, 38(4), 043001.

Yin, J., Cao, Y., Li, Y. H., Liao, S. K., Zhang, L., Ren, J. G., and Pan, J. W. (2017). Satellite-based entanglement distribution over 1200 kilometers. Science, 356(6343), 1140-1144.

Yu, T., and Eberly, J. H. (2009). Sudden death of entanglement. Science, 323(5914), 598-601.




DOI: https://doi.org/10.17509/ijost.v6i1.31921

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Indonesian Journal of Science and Technology

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Science and Technology is published by UPI.
StatCounter - Free Web Tracker and Counter
View My Stats