Experimental Study on The Characterization of Pyrolysis Products from Bagasse (Saccharum Officinarum L.): Bio-oil, Biochar, and Gas Products

Siti Jamilatun, Joko Pitoyo, Shinta Amelia, Alfian Ma’arif, Dhias Cahya Hakika, Ilham Mufandi


Sugarcane bagasse is one of the most abundant biomasses. This study aims to examine the characteristics of bagasse using a pyrolysis system to produce liquid, solid (Biochar), and gaseous. A fixed bed reactor was installed in pyrolysis with temperature variations from 300 to 600°C. The ultimate and proximate analysis was applied to evaluate the characteristic of bagasse. The experimental result found that the maximum bio-oil was obtained at a temperature of 550°C. Several characterizations were done, including gas chromatography and surface area analysis. The Levoglucosan compound of 78% area. The temperature effect on pyrolysis influenced the O/C ratio, H/C ratio, HHV value, and surface area of biochar. The High Heating Value was obtained from 16.698 to 18.496 kJ/kg. Biochar results indicated that the surface area, average pore size, and total pore volume are 180.3-198.0 m2/g, 1.42-4.33 nm, and 0.11-0.12 nm, respectively. The study also analyzed its composition in biochar.


Bagasse; Biochar; Pyrolysis; Surface area; Brunauer–Emmett–Teller (BET)

Full Text:



Aboul-Enein, A. A., Awadallah, A. E., El-Desouki, D. S., and Aboul-Gheit, N. A. (2021). Catalytic pyrolysis of sugarcane bagasse by zeolite catalyst for the production of multi-walled carbon nanotubes. Journal of Fuel Chemistry and Technology, 49(10), 1421-1434.

Ahmad, N., Zeeshan, M., Iqbal, N., Farooq, M. Z., and Shah, S. A. (2018). Investigation of yield and quality of bio-oil by adding used tires to bagasse pyrolysis. Journal of Clean Production, 196, 927-934.

Aini, N. A., Jamilatun, S., and Pitoyo, J. (2022). Pirolisis biomassa. Agroindustrial Technology Journal, 6(1), 89-101.

Alvarez, J., Hooshdaran, B., Cortazar, M., Amutio, M., Lopez, G., Freire, F. B., Haghshenasfard, M., Hosseini, S. H., and Olazar, M. (2018). Valorization of citrus wastes by fast pyrolysis in a conical spouted bed reactor. Fuel, 224, 111–120.

Asadullah, M., Rahman, M. A., Ali, M. A., Rahman, M. S., M. A., M. B., and Alam, M. R. (2007). Production of bio-oil from fixed bed bagasse pyrolysis. Fuel, 86, 2514–2520.

Bhattabiocharjee, N., and Biswas, A. B. (2019). Pyrolysis of orange bagasse: Comparative Study and influence of parametrics on product yields and their biocharacterization. Journal of Environmental Chemical Engineering, 7(2019), 102903.

Cardosoa, A. R. T., Conradoa, N. M. C., Krausea, M. C., Bjerka, T. R., Krausea, L. C., Caramãoa, E. B. (2019). Chemical biocharacterization of the bio-oil was obtained by catalytic pyrolysis of bagasse (industrial waste) of the species Erianthus Arundinaceus. Journal of Environmental Chemical Engineering, 7, 102970.

Carrier, M., Hugo, T., Gorgens, J., Knoetze, H. (2011). Comparison of slow pyrolysis and vacuum bagasse. Journal of Applied and Analytical Pyrolysis, 90(2011), 18–26.

Chaiwong, K., Kiatsiriroat, T., Vorayos, N., and Thararax, C. (2013). Study of bio-oil and bio-char production from algae by slow pyrolysis. Biomass and Bioenergy, 56, 600–606.

Chapel, D.V., and Rotliwala, Y.C. (2022). The effect of adding bagasse by corolysis with fecal sludge on thermogravimetric biocharacteristics and kinetic studies. Today's Material: Proceedings, 57, 1776–1780.

Chen, R., Zhang, D., Xu, X., and Yuan, Y. (2021). Pyrolysis characteristics, kinetics, thermodynamics and volatile products of waste medical surgical mask rope by thermogravimetry and online thermogravimetry-Fourier transform infrared-mass spectrometry analysis. Fuel, 295, 120632.

da Silva Veiga, P. A., Cerqueira, M. H., Goncalves, M. G., da Silva Matos, T. T., Pantano, G., Schultz, J., and Mangrich, A. S. (2021). Upgrading from batch to continuous flow process for the pyrolysis of sugarcane bagasse: Structural characterization of the biochars produced. Journal of Environmental Management, 285, 112145.

Davda, R.R., Shabaker, J.W., Huber, G.W., Cortright, R.D., and Dumesic, J.A. (2002). A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts. Applied Catalysis B: Environmental, 56, 171–186.

David, G. F., Justo, O. R., Perez, V. H., and Garcia-Perez, M. (2018). Thermochemical conversion of sugarcane bagasse by fast pyrolysis: high yield of levoglucosan production. Journal of Analytical and Applied Pyrolysis, 133, 246-253.

David, G. F., Perez, V. H., Justo, O. R., and Garcia-Perez, M. (2017). Effect of acid additives on sugarcane bagasse pyrolysis: production of high yields of sugars. Bioresource Technology, 223, 74-83.

Demiral, İ., and Ayan, E. A. (2011). Pyrolysis of grape bagasse: effect of pyrolysis conditions on the product yields and characterization of the liquid product. Bioresource Technology, 102(4), 3946-3951.

Dhyani, V., and Bhaskar, T. (2018). A comprehensive review of the pyrolysis of lignocellulosic biomass. Renewable Energy, 129, 695-716.

Garba, M. U., Musa, U., Olugbenga, A. G., Mohammad, Y. S., Yahaya, M., and Ibrahim, A. A. (2018). Catalytic upgrading of bio-oil from bagasse: Thermogravimetric analysis and fixed bed pyrolysis. Beni-Suef University Journal of Basic and Applied Sciences, 7(4), 776-781.

Gautam, N., and Chaurasia, A. (2020). Study on kinetics and bio-oil production from rice husk, rice straw, bamboo, sugarcane bagasse and neem bark in a fixed-bed pyrolysis process. Energy, 190, 116434.

Ghorbannezhada, P., Firouzabadia, M. D., Ghasemiana, A., de Wild, P. J., and Heeres, P. J. (2018). Ex-situ rapid catalytic pyrolysis of bagasse for the production of Benzene, Toluene and Xylene (BTX). Journal of Applied and Analytical Pyrolysis, 131, 1–8.

Guedesa, R.E., Lunaa, A.S., Torres, A.R. (2018). Operating parameters for bio-oil production in biomass pyrolysis: A review. Journal of Analytical and Applied Pyrolysis, 129(2018). 134–149

Han-u-domlarpyos, V., Kuchonthara, P., Reubroycharoen, P., Hinchiranan, N. (2015). Quality improvement of oil palm shell-derived pyrolysis oil via catalytic deoxygenation over NiMoS/c-Al2O3. Fuel, 143, 512–518.

Jamilatun, S., Budiman, A., Anggorowati, H., Yuliestyan, A., Pradana, Y. S., Budhijanto, Rochmadi. (2019). Ex-situ catalytic upgrading of spirulina platensis oil residue using silica alumina catalyst. International Journal of Renewable Energy Research, 9(4), 1733-1740.

Kan T., Strezov, V., and Evans, T.J. (2016). Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. Renewable and Sustainable Energy Reviews, 57, 1126–1140.

Krishna, J. J., Damir, S. S., and Vinu, R. (2021). Pyrolysis of electronic waste and their mixtures: Kinetic and pyrolysate composition studies. Journal of Environmental Chemical Engineering, 9(4), 105382.

Lee, M. K., Tsai, W. T., Tsai, Y. L., and Lin, S. H. (2010). Pyrolysis of napier grass in an induction-heating reactor. Journal of Analytical and Applied Pyrolysis, 88(2), 110–116.

Leng, L., Xiong, Q., Yang, L., Li, H., Zhou, Y., Zhang, W., Jiang, S., Li, H., and Huang, H. (2021). An overview on engineering the surface area and porosity of biochar. Science of the Total Environment, 763, 144204.

Li, Y., Shao, J., Wang, X., Deng, Y., Yang, H., and Chen, H. (2014). Biocharacterization of modified Biochar from bamboo pyrolysis and its use for adsorption of target components (furfural). Energy Fuel, 28, 5119–5127.

Liao, W., Zhang, X., Ke, S., Shao, J., Yang, H., Zhang, S., and Chen, H. (2022). Effect of different biomass species and pyrolysis temperatures on heavy metal adsorption, stability and economy of biochar. Industrial Crops and Products, 186, 115238.

Lin, T. Y., and Kuo, C. P. (2012). Study of the yield of bagasse and sawdust through slow pyrolysis and iron catalyst. Journal of Applied and Analytical Pyrolysis, 96, 203–209.

Lu, K., Yang, X., Shen, J., Robinson, B., Huang, H., Liu, D., and Wang, H. (2014). Effect of bamboo biochar and rice straw on the bioavailability of Cd, Cu, Pb and Zn in Sedum plumbizincicola. Agriculture, Ecosystem, Environment, 191, 124-132.

Miranda, N. T., Motta, I. L., Maciel Filho, R., and Maciel, M. R. W. (2021). Sugarcane bagasse pyrolysis: A review of operating conditions and products properties. Renewable and Sustainable Energy Reviews, 149, 111394.

Montoya, J., Pechab, B., Romana, D., Janna, F. C., and Garcia-Perez, M. (2017). Effect of temperature and heating rate on product distribution of bagasse pyrolysis in hot plate reactor. Journal of Applied and Analytical Pyrolysis, 123, 347–363.

Mufandi, I., Treedet, W., Singbua, P., and Suntivarakorn, R. (2020). Efficiency of bio - oil production from napier grass using circulating fluidized bed reactor with bio - oil scrubber. KKU Research Journal, 20, 94–107.

Omulo, G., Banadda, N., Kabenge, I., and Seay, J. (2019). Optimizing slow pyrolysis of banana peels wastes using response surface methodology. Environmental Engineering Research, 24(2), 354-361.

Ordonez-Loza, J., Chejne, F., Jameel, A. G. A., Telalovic, S., Arrieta, A. A., and Sarathy, S. M. (2021). An investigation into the pyrolysis and oxidation of bio-oil from sugarcane bagasse: Kinetics and evolved gases using TGA-FTIR. Journal of Environmental Chemical Engineering, 9(5), 106144.

Pradana, Y. S., Hartono, M., Prasakti, L., and Budiman, A. (2019). Effect of calcium and magnesium catalyst on pyrolysis kinetic of Indonesian sugarcane bagasse for biofuel production. Energy Procedia, 158, 431-439.

Prasher, P., Sharma, M., and Mudila, H. (2022). Chapter 22 - green nanomaterials produced by agricultural wastes and microbes: Mechanisms and risk assessment. Agricultural Waste and Microbes for Sustainable Production of Nanomaterials, 2022, 535-561.

Qin, Q., Zhang, C., Zeng, G., Huang, D., Tan, X., and Duan, A. (2022). Carbonization of lignocellulosic biomass for biobiochar production and biocharacterization of biochar reactivity. Renewable and Sustainable Energy Review, 157, 112056.

Rodier, L., Bilba, K., Onésippe, C., and Arsène, M. A. (2019). Utilization of bio-chars from sugarcane bagasse pyrolysis in cement-based composites. Industrial Crops and Products, 141, 111731.

Santamaria, L., Lopez, G., Arregi, A., Artetxe, M., Amutio, M., Bilbao, J., and Olazar, M. (2020). Catalytic steam reforming of biomass fast pyrolysis volatiles over Ni–Co bimetallic catalysts. Journal of Industrial and Engineering Chemistry, 91, 167–181.

Savo, V., Grause, G., Kumagai, S., Saito, Y., Kameda, T., and Yoshioka, T. (2019). Pyrolysis of bagasse treated with sulfuric acid. Journal of the Energy Institute, 92, 1149-1157.

Soongprasita, K., Sribiocharoenchaikul, V., and Atonga, D. (2021). Selective aromatic production from rapid pyrolysis of bagasse lignin with ZSM-5 catalyst. Energy Report, 7, 830–843.

Stegena, S., and Kaparajua, P. (2010). Effect of temperature on the quality of the oil obtained through the pyrolysis of bagasse. Fuel, 276, 118112

Tsai, W.T., Lee, M.K., and Chang, Y. M. (2007). Fast pyrolysis of rice husk: Product yields and compositions. Bioresource Technology, 98, 22–28.

Varma, A. K., and Mondal, P. (2017). Bagasse pyrolysis in semi-batch reactor: Effect of process parameters on product yield and product biocharacterization. Industrial Plants and Products, 95, 704–717.

Xu, X., Cao, X., Zhao, L., and Sun, T. (2014). Comparison of biobiochar derived from sewage sludge and pig manure to remove hydrogen sulfide. Chemosphere, 111, 296–303.

Yogalakshmi, K. N., Sivashanmugam, P., Kavitha, S., Kannah, Y., Varjani, S., AdishKumar, S., and Kumar, G. (2022). Lignocellulosic biomass-based pyrolysis: A comprehensive review. Chemosphere, 286, 131824.

Zhang, K., Cheng, X., Dang, H., Ye, C., Zhang, Y., and Zhang, Q. (2013). Linking litter production, quality and decomposition to vegetation succession following agricultural abandonment. Soil Biology and Biochemistry, 57, 803-813.

DOI: https://doi.org/10.17509/ijost.v7i3.51566


  • There are currently no refbacks.

Copyright (c) 2022 Universitas Pendidikan Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Science and Technology is published by UPI.
StatCounter - Free Web Tracker and Counter
View My Stats