A Hybrid Machine Learning Approach for Web-Based Anomaly Detection in Network Traffic: Strengthening Cybersecurity Education and Advancing SDGs 4 and 9
Abstract
Keywords
Full Text:
PDFReferences
Abdallah, A. M., Alkaabi, A. S. R. O., Alameri, G. B. N. D., Rafique, S. H., Musa, N. S., and Murugan, T. (2024). Cloud network anomaly detection using machine and deep learning techniques—Recent research advancements. IEEE Access, 12, 56749–56773.
Abdelkhalek, A., and Mashaly, M. (2023). Addressing the class imbalance problem in network intrusion detection systems using data resampling and deep learning. The Journal of Supercomputing, 79(10), 10611–10644.
Ahmed, M., and Mahmood, A. N. (2015). Novel approach for network traffic pattern analysis using clustering-based collective anomaly detection. Annals of Data Science, 2(1), 111–130.
Aribisala, B., Odusanya, O., Olabanjo, O., Wahab, E., Atilola, O., and Saheed, A. (2022). Development of an Artificial Neural Network Model for Detection of COVID-19. International Journal of Scientific Advances, 3(4), 377–385.
Djenna, A., Harous, S., and Saidouni, D. E. (2021). Internet of things meet internet of threats: New concern cyber security issues of critical cyber infrastructure. Applied Sciences, 11(10), 4580.
George, A. S., Baskar, T., and Srikaanth, P. B. (2024). Cyber threats to critical infrastructure: assessing vulnerabilities across key sectors. Partners Universal International Innovation Journal, 2(1), 51-75.
Kilincer, I. F., Ertam, F., and Sengur, A. (2021). Machine learning methods for cyber security intrusion detection: Datasets and comparative study. Computer Networks, 188, 107840.
Kumar, D. A., and Venugopalan, S. (2017). Intrusion detection systems: A review. International Journal of Advanced Research in Computer Science, 8(8), 356–370.
Martins, I., Resende, J. S., Sousa, P. R., Silva, S., Antunes, L., and Gama, J. (2022). Host-based IDS: A review and open issues of an anomaly detection system in IoT. Future Generation Computer Systems, 133, 95–113.
Shahin, M., Maghanaki, M., Hosseinzadeh, A., and Chen, F. F. (2024). Advancing network security in industrial IoT: A deep dive into AI-enabled intrusion detection systems. Advanced Engineering Informatics, 62, 102685.
DOI: https://doi.org/10.17509/ijomr.v5i2.86147
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Kantor Jurnal dan Publikasi, Universitas Pendidikan Indonesia (UPI)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Multidiciplinary Research (IJOMR) is published by Universitas Pendidikan Indonesia (UPI)