Bambang Avip Priatna


Let T be a nonnegative random variable representing the lifetimes of individuals in some population. Let f(t) denote the probability density function of T and F(t) denote the distribution function of T, the hazard function of T defined as

If equation (1) integrated we have cumulative hazard function H (t).

This paper describes application of kernel method for estimation of hazard function h (.) based censoring data. And then we will show that the hazard estimator is unbiased asymptotically, consistent, and normal asymptotically.


kernel methods; estimation hazard function

Full Text:



Eubank, R. L. (1988). “Spline smoothing and Nonparametric Regression”. New York : Marcel Dekker.

Gasser, Th., Muller, H. G. (1979). “Kernel estimation of regression functions”. In Smoothing Teqniques for Curve Estimation. Gesser, Th. Dan Rosenblatt, M. (eds.). Heidelberg : Springer.

Klein, J. P,. Moeschberger, M.L. (1997). “Survival Analysis” : Techniques for Cencored and Trucated Data”. New York : Springer-Verlag.

Lawless, J.F. (1982). “Statistical Models and Methods for Lifetime Data”. New York: John Wiley & Sons.

Ramlau-Hansen, H. (1983). “Smoothing Counting Processes by Mean of Kernel Function”. The Annals of Statistics, 11, 453-466.

DOI: https://doi.org/10.18269/jpmipa.v6i2.34987


  • There are currently no refbacks.

Copyright (c) 2021 Jurnal Pengajaran MIPA

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

JPMIPA http://ejournal.upi.edu/index.php/jpmipa/index is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Jurnal Pengajaran Matematika dan Ilmu Pengetahuan Alam (JPMIPA) or Journal of Mathematics and Science Teaching 

All rights reserverd. pISSN 1412-0917 eISSN 2443-3616

Copyright © Faculty of Mathematics and Science Education (FPMIPA) Universitas Pendidikan Indonesia (UPI)


View JPMIPA Stats