PENALARAN KREATIF MATEMATIS

Aprilia Dwi Handayani

Abstract


ABSTRAK

Matematika dapat dipandang sebagai cara bernalar, karena matematika memuat cara pembuktian yang sahih atau valid, serta sifat penalaran matematika yang sistematis. Kemampuan penalaran merupakan salah satu dari kompetensi yang harus dimiliki oleh peserta didik. Materi matematika dan penalaran matematika merupakan dua hal yang tidak dapat dipisahkan, materi matematika dipahami melalui penalaran dan penalaran dipahami dan dilatih melalui belajar materi matematika. Dalam artikel ini akan dibahas tentang salah satu jenis penalaran menurut Lithner, yaitu penalaran kreatif. Terdapat dua jenis penalaran yang sering digunakan siswa dalam menyelesaikan tugas-tugas matematika, yaitu: Creative Reasoning (Penalaran Kreatif) dan Imitatif Reasoning (Penalaran Imitatif). Penalaran kreatif mempunyai empat kriteria, yaitu: kebaruan (novelty), fleksibel (flexibility), masuk akal (plausible) dan berdasar matematis (mathematical foundation).

ABSTRACT

Mathematics can be seen as a way of reasoning, because mathematics contain valid way of proving, as well as the systematic nature of mathematical reasoning. Reasoning ability is one of the competencies required by learners. Mathematics and mathematical reasoning are two things that cannot be separated, the material is understood through reasoning and mathematical reasoning to understand and are trained through learning mathematics. In this article will discuss about one of the types of reasoning according to Lithner, creative reasoning. There are two types of reasoning that is often used by students in solving mathematical tasks: creative reasoning and imitative reasoning. Creative reasoning has four criteria: novelty, flexible, reasonable and mathematical foundation.


Keywords


kreatif; matematika; penalaran; creative; mathematics; reasoning

Full Text:

PDF

References


Adams, J.W. (2007). Individual differences in mathematical ability: genetic, cognitive and behavioural factors. Journal of Research in Special Educational Needs Volume 7 Number 2 page 97–103

Bervqvist, T., Lithner, J., and Sumpter, L. (2002). Reasoning Characteristics in Upper Secondary School Students’ Task Solving. Artikel : [On line]. Tersedia

Berqvist, E. (2007). Types of Reasoning Required in Univesity Exams in Mathematics. Artikel: [On line]. Tersedia

Boesen, J. (2007). Why Emphasise Imitative Reasoning? Teacher-made Test. Departemen of Mathematics Umea University.

Lithner, J. (2006). A Framework for Analysing Creative and Imitative Mathematical Reasoning. Artikel: [On line]. Tersedia:

Palm, T., Boesen, J., and Lithner, J. (2006). The Requirements of Mathematical Reasoning in Upper secondary Level Assessments

Permana, Y., dan Sumarmo, U. (2007). Mengembangkan Kemampuan Penalaran dan Koneksi Matematik Siswa SMA Melalui Pembelajaran Berbasis Masalah. Educationist: Vol 1 No.2 hal 116-123

Polya, G. Mathematics and Plausible Reasoning. Volume 1

Raimi, R. (2002). Part 2 of A Mathematical Manifesto

NYC HOLD. Online. Tersedia: http://nychold.com/raimi-reason02.html

Steen, L.A. (1999). Developing Mathematical Reasoning in Grades K-12. National Council of Teachers of Mathematics, pp. 270-285.




DOI: https://doi.org/10.18269/jpmipa.v18i2.36131

DOI (PDF): https://doi.org/10.18269/jpmipa.v18i2.36131.g15511

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Jurnal Pengajaran MIPA

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

JPMIPA http://ejournal.upi.edu/index.php/jpmipa/index is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Jurnal Pengajaran Matematika dan Ilmu Pengetahuan Alam (JPMIPA) or Journal of Mathematics and Science Teaching 

All rights reserverd. pISSN 1412-0917 eISSN 2443-3616

Copyright © Faculty of Mathematics and Science Education (FPMIPA) Universitas Pendidikan Indonesia (UPI)

 

View JPMIPA Stats