Cover Image

Promoting Student's Problem-Solving Skills through STEM Project-Based Learning in Earth Layer and Disasters Topic

Firdha Sarah Kartini, Ari Widodo, Nanang Winarno, Lia Astuti

Abstract


Located in the Pacific Ring of Fire, Indonesia is endangered by natural disasters. Through the changing of learning activity in a proper way by the application of STEM Project-Based Learning, future generations are expected to develop the knowledge and thinking skill to solve the problem. Therefore, this study aimed to investigate implementing STEM Project-Based Learning on student's Problem-Solving Skills. This research used a Pre-Experiment method with a One-Group Pretest-Posttest design and essay questions as data collection tools. In this research, 30 7th-grade students at one school in Bandung, Indonesia, were chosen as the participants. The data analysis showed significant improvement between student's Problem-Solving skills pretest and post-test (N-Gain=0.73). In addition, Idea-Finding is the most significant improvement during the Fact-Finding on the lowest. Based on the result, STEM Project-Based Learning is recommended to improve students' Problem-Solving Skills since they can use their integrated knowledge to solve a real-world problem.

Full Text:

DOWNLOAD PDF

References


Apriyani, R., Ramalis, T. R., & Suwarma, I. R. (2019). Analyzing Student's Problem Solving Abilities of Direct Current Electricity in STEM-based Learning. Journal of Science Learning, 2(3), 85–91. https://doi.org/10.17509/jsl.v2i3.17559

Arisanti, W. O. L., Sopandi, W., & Widodo, A. (2016). Analisis Penguasaan Konsep dan Keterampilan Berpikir Kreatif Siswa SD Melalui Project Based Learning. EduHumaniora|Jurnal Pendidikan Dasar Kampus Cibiru, 8(1), 82-95.

Arreola, N. J., & Reiter-Palmon, R. (2016). The effect of problem construction creativity on solution creativity across multiple everyday problems. Psychology of Aesthetics, Creativity, and the Arts, 10(3), 287–295. https://doi.org/10.1037/a0040389

BNPB. (2020). Data Informasi Bencana Indonesia (DIBI). Retrieved from https://bnpb.cloud/dibi/

Benedek, M., Nordtvedt, N., Jauk, E., Koschmieder, C., Pretsch, J., Krammer, G., & Neubauer, A. C. (2016). Assessment of creativity evaluation skills: A psychometric investigation in prospective teachers. Thinking Skills and Creativity, 21, 75–84. https://doi.org/10.1016/j.tsc.2016.05.007

Bhakti, Y. B., Astuti, I. A. D., Okyranida, I. Y., Asih, D. A. S., Marhento, G., Leonard, L., & Yusro, A. C. (2020). Integrated STEM Project Based Learning Implementation to Improve Student Science Process Skills. Journal of Physics: Conference Series, 1464(1). https://doi.org/10.1088/1742-6596/1464/1/012016

BigRentz. (2020). How Earthquake-Proof Buildings Are Designed. Retrieved from https://www.bigrentz.com/blog/earthquake-proof-buildings

Capraro, M. M., & Jones, M. (2013). Interdisciplinary STEM project-based learning. STEM Project-Based Learning an Integrated Science, Technology, Engineering, and Mathematics (STEM) Approach, 51–58. https://doi.org/10.1007/978-94-6209-143-6_6

Chang, C. Y., & Weng, Y. H. (2002). An exploratory study on students' problem-solving ability in earth science. International Journal of Science Education, 24(5), 441–451. https://doi.org/10.1080/09500690110066502

CNN Indonesia. (2019). BMKG: Jepang Sudah Wajibkan Bangunan Anti Gempa Sejak 1990. Retrieved from https://www.cnnindonesia.com/teknologi/20191003112012-199-436323/bmkg-jepang-sudah-wajibkan-bangunan-anti-gempa-sejak-1990

Cropley, A. (2006). In praise of convergent thinking. Creativity Research Journal, 18(3), 391-404.

Deniz, M. (2004). Investigation of the Relation between Decision Making Self-Esteem, Decision Making Style and Problem Solving Skills of University Students. Eurasian Journal of Educational Research (EJER), (15).

Earthquake Track. (2020). Recent Earthquakes Near Indonesia. Retrieved from https://earthquaketrack.com/p/indonesia/recent

Gustiani, I., Widodo, A., & Suwarma, I. R. (2017). Development and validation of science, technology, engineering and mathematics (STEM) based instructional material. In AIP Conference Proceedings (Vol. 1848, No. 1, p. 060001). AIP Publishing LLC.. https://doi.org/10.1063/1.4983969

Guthrie, J. T., Schafer, W. D., Von Secker, C., & Alban, T. (2000). Contributions of instructional practices to reading achievement in a statewide improvement program. Journal of Educational Research, 93(4), 211–225. https://doi.org/10.1080/00220670009598710

Grohman, M., Wodniecka, Z., & Kłusak, M. (2006). Divergent thinking and evaluation skills: Do they always go together?. Journal of Creative Behavior, 40(2), 125–145.

Hake, R. R. (1998). Interactive-engagement versus traditional methods: A six-thousand-student survey of mechanics test data for introductory physics courses. American Journal of Physics, 66(1), 64-74. https://doi.org/10.1119/1.18809

Hanif, S., Wijaya, A. F. C., & Winarno, N. (2019). Enhancing Students' Creativity through STEM Project-Based Learning. Journal of Science Learning, 2(2), 50. https://doi.org/10.17509/jsl.v2i2.13271

Henderson, C. (2005). Strategies for the Development of Student Problem Solving Skills in the High School Physics Classroom. Am. J. Physics, 59(10), 891-897.

Heffernan, K., & Teufel, S. (2018). Identifying problems and solutions in scientific text. Scientometrics, 116(2), 1367–1382. https://doi.org/10.1007/s11192-018-2718-6

Jua, S. K. , Sarwanto, & Sukarmin. (2018). The profile of students' problem-solving skill in physics across interest program in the secondary school. In Journal of Physics: Conference Series (Vol. 1022, No. 1, p. 012027). IOP Publishing.

Lou, S. J., Chou, Y. C., Shih, R. C., & Chung, C. C. (2017). A study of creativity in CaC 2 steamship-derived STEM project-based learning. Eurasia Journal of Mathematics, Science and Technology Education, 13(6), 2387–2404. https://doi.org/10.12973/EURASIA.2017.01231A

Maydeu-Olivares, A., & D'Zurilla, T. J. (1997). The factor structure of the problem solving inventory. European Journal of Psychological Assessment, 13(3), 206–215. https://doi.org/10.1027/1015-5759.13.3.206

Nuraziza, R., & Suwarma, I. R. (2018). Menggali Keterampilan Creative Problem Solving Yang Dimiliki Siswa SMP Melalui Pembelajaran IPA Berbasis STEM [Exploring the Creative Problem Solving Skills of Junior High School Students Through STEM-Based Science Learning]. WaPFi (Wahana Pendidikan Fisika), 3(1), 55. https://doi.org/10.17509/wapfi.v3i1.10941

Netwong, T. (2018). Development of Problem Solving Skills by Integration Learning Following STEM Education for Higher Education. International Journal of Information and Education Technology, 8(9), 639–643. https://doi.org/10.18178/ijiet.2018.8.9.1114

OECD. (2019). PISA 2018 Results: Combined Executive Summaries, Volume I, II & III. Retrieved from https://www.oecd.org/pisa/Combined_Executive_Summaries_PISA_2018.pdf

Osborn, A. F. (1963). Applied imagination; principles and procedures of creative problem-solving. Scribner.

Schlegel, R. J., Chu, S. L., Chen, K., Deuermeyer, E., Christy, A. G., & Quek, F. (2019). Making in the classroom: Longitudinal evidence of increases in self-efficacy and STEM possible selves over time. Computers & Education, 142, 103637. https://doi.org/10.1016/j.compedu.2019.103637

Tseng, K. H., Chang, C. C., Lou, S. J., & Chen, W. P. (2013). Attitudes towards science, technology, engineering and mathematics (STEM) in a project-based learning (PjBL) environment. International Journal of Technology and Design Education, 23(1), 87-102 https://doi.org/10.1007/s10798-011-9160-x

Treffinger, D. J., Isaksen, S. G., & Stead-Dorval, K. B. (2005). Creative problem solving: An introduction. Prufrock Press Inc.

Whitten, S., & Graesser, A. C. (2003). Comprehension of text in problem solving. In J. E. Davidson & R. J. Sternberg (Eds.), The psychology of problem solving (pp. 207–229). New York, NY: Cambridge University Press.

Yuliati, L., Riantoni, C., & Mufti, N. (2018). Problem solving skills on direct current electricity through inquiry-based learning with PhET simulations. International Journal of Instruction, 11(4), 123–138. https://doi.org/10.12973/iji.2018.1149a




DOI: https://doi.org/10.17509/jsl.v4i3.27555

Refbacks

  • There are currently no refbacks.




Copyright (c) 2021 Firdha Sarah Kartini, Ari Widodo, Nanang Winarno, Yustika Sya'bandani

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Journal of Science Learning is published by Universitas Pendidikan Indonesia
in collaboration with the Indonesian Society of Science Educators
Jl. Dr. Setiabudhi 229 Bandung 40154, West Java, Indonesia
Website: http://www.upi.edu
Email: js
learning@upi.edu